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Abstract

The primary objective of this research was to examine artificial potential func-

tion (APF) guidance performance when applied to systems with limited control au-

thority in a dynamic environment and then to use the findings to develop a hybrid

guidance to improve algorithm convergence and computational cost. Performance

with respect to both computation time and cost was improved by hybridizing the

APF approach with receding horizon optimal control planning. Results showed that

for the hybrid algorithm, computation time was improved from the optimal control

solution while improving the convergence and cost from the baseline APF solution.

While the hybrid method greatly improved performance for a saturated system in dy-

namic environment, this was limited to a fully actuated system. When applied with

indirect control, performance was improved, but did not converge. Based on this

initial data, the hybrid approach shows promise in regard to implementation within

a real-time guidance scheme, however, there is still work to be done before it will be

fully effective. The secondary objective of this research was to determine what classes

of problems are well-suited to APFs or APF-hybrids. The data suggests that APFs

and the hybrid algorithm proposed are best applied to fully actuated systems. Addi-

tionally, if external dynamics or substantial saturation exist, APF guidance performs

better when supplemented with an alternative method.
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Performance Characterization, Development, and

Application of Artificial Potential Function Guidance

Methods

I. Introduction

1.1 Motivation and Background

As autonomous systems become more prevalent, there is an increased need for

precision real-time guidance solutions. Current autonomous aircraft guidance systems

typically exert control via way-point navigation or are designed to loiter about a

specified point. Waypoint navigation traditionally employs simple feedback loops

to eliminate track error and maintain altitude and/or airspeed schedules. A loiter

system may simply compute leg times and turn radius to indefinitely suspend at

a given location. While these types of guidance systems are abundant, they do not

normally account for a performance index in a more global sense. While the algorithm

may internally minimize track or altitude error with or without minimizing control

effort, it usually does not attempt to minimize broader performance indexes such as

transit time or fuel consumption. This is largely because real-time optimal guidance

solutions that are robust to changes within a dynamic environment still represent a

challenge to solve due to their complexity and computational requirements.

With this in mind, the need for high-performing, computationally efficient guid-

ance algorithms is evident. Various solutions have been proposed and analyzed by

the guidance and control community to include pseudospectral optimization methods,

neural networking, evolutionary algorithms, and artificial potential functions. While

there has been significant research in these areas, a research gap is evident in the

study of artificial potential functions (APF). APFs have been successfully applied in

the fields of robotics [1] and satellite rendezvous and proximity operations [2, 3], but

little work has been done to improve APF-based algorithms with respect to perfor-
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mance indexes or robustness. Additionally, little work has been done to assess the

utility of APFs with respect to systems that are not fully actuated1 and/or have

limited control authority.

1.2 Artificial Potential Functions

Artificial potential functions were created to serve as reactionary trajectory

planning algorithms. They are scalar-valued functions that result from the superpo-

sition of attractive and repulsive potential fields [4]. These attractive and repulsive

potential fields are typically Gaussian or harmonic functions modeled to drive the sys-

tem to a desired set of states as well as avoid obstacles. The attractive field is designed

to create a global minimum at the goal state. The repulsive field consists of areas of

high potential modeled at the obstacles. If the combined potential function can be

designed without local minima then the objective is guaranteed to be reached while

also avoiding collisions [5]. Figure 1.1 shows the gradients of an example potential

field.

The appeal of APF guidance is the simplicity of implementation and computa-

tional efficiency. The guidance solution results from following the negative gradient of

the potential field at all times. Since the potential field is designed as a differentiable

analytic expression, the gradient computation is a simple evaluation of an analytic

expression.

The form of APF implementation is typically chosen such that it possesses

certain characteristics. These characteristics include a unique global minimum and

absence of local minima. A unique global minimum can usually be guaranteed, but

preventing local minima is quite difficult. The existence of local minima in the vector

field allows the possibility for the vehicle to become trapped before the goal state

has been reached. Unfortunately, in a dynamic environment it is often impossible

1Fully actuated refers to a system in which direct and instantaneous control of the vehicle’s
acceleration is possible.

2



Figure 1.1: Artificial potential function illustration [4]

to guarantee that the potential space is devoid of local minima2. Instead, it is com-

mon practice with traditional APF guidance to include a perturbation algorithm to

move the vehicle away from a local minimum (if trapped) and ensure the goal state

is reached. Another local minima preventative measure includes grouping nearby ob-

stacles to form a single larger obstacle. This practice is also used to address issues

with arbitrarily shaped obstacles.

Assuming any local minima issues have been mitigated, converging to a global

minimum is only possible if the vehicle can actually follow the gradient of the potential

field. It is conceivable that the available control power of the vehicle can be less than

that required by the APF. In this case, convergence to the global minimum is still

possible, but no longer guaranteed because the path of steepest descent is no longer

being followed. By the same logic, a collision free path cannot be guaranteed.

2The issue of local minima is a limitation of the gradient descent method and is not unique to
artificial potential functions.
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Difficulties can also exist when the force required by the APF to follow the

negative gradient of the potential field does not directly translate to a control. In

satellite dynamics, the required force can be directly achieved by firing thrusters.

However, if the control is an actuator, translation of the required force to a control is

often not straightforward.

This thesis aims to address the issues of controllability and indirect force actu-

ation. Additionally, the impact to the APF trajectory due to external dynamics will

be examined.

1.3 Optimization

Optimization within the guidance framework is desirable when a performance

index is important. This includes minimum fuel, minimum transit time, maximum

range, etc. Optimal control theory is derived from the calculus of variations which

consists of maximizing or minimizing functionals.

Optimal control problems (OCP) must be solved at a high refresh rate if they are

to be used in real-time guidance in a dynamic environment. Often, the computational

burden and processing limitations of finding the OCP solution prevent it from being

generated fast enough for real-time guidance applications.

Artificial potential functions have shown promise in guidance solutions due to

their computational efficiency since the solution results from evaluating an analytic

expression. Very high sample rates can be used with APF guidance, however, APF

solutions are inherently suboptimal and lack robustness.

1.4 Thesis Objectives and Methodology

The goal of this research is to examine APF performance when applied to sys-

tems with limited control authority and external dynamics and use the findings to

develop a hybrid guidance algorithm based on an appropriate measure of tradeoff

between computational efficiency and optimality.

4



To highlight the benefits and shortcomings of each method, a simple two-

dimensional case study will be developed and analyzed to compare and contrast APFs

with optimal control solutions.

The secondary objective of this research is to determine what classes of problems

are well-suited to APFs or APF-hybrids. For example, satellite rendezvous with

Clohessy-Wiltshire3 dynamics are well-suited to APF guidance because gravity is the

only driving force and the control is fully actuated via thrusters. It is to be determined

if APFs can be effectively implemented for more complex problems such as terrestrial

navigation where external forces have significant impact on vehicle dynamics.

1.5 Thesis Outline

A literature review containing background information on artificial potential

functions, optimal control theory, and relevant works will be detailed in Chapter 2.

In Chapter 3, simple case studies will be used to characterize the performance of APF

guidance methods. Comparisons will also be made to optimally planned trajectories.

Chapter 4 will detail the development and application of a hybrid guidance algorithm

that combines receding horizon optimal control planning with artificial potential func-

tion guidance. Finally, a summary of the work completed will along with conclusions

and recommendations for future work will be presented in Chapter 5.

3The Clohessy-Wiltshire equations represent a linearized model for the rendezvous of a chaser
satellite with a target satellite.
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II. Literature Review

A brief history of artificial potential functions and their applications is provided as

well as an overview of optimal control theory as it relates to this research.

2.1 Artificial Potential Functions

Artificial potential functions provide the capability of real-time guidance in a

dynamic environment. Previous research on their development and application has

included satellite rendezvous and proximity operations [3,6], terrestrial robot naviga-

tion [5,7], unmanned underwater vehicle navigation [8,9], and cooperative unmanned

aerial vehicle control [10, 11]. Artificial potential functions are appealing due to the

computational efficiency of the gradient descent technique.

2.1.1 Types of Artificial Potential Functions. As mentioned in Chapter

1, the defined potential fields are differentiable thus an analytic expression for the

gradient exists. The exact form of the gradient is determined by the type of APF im-

plemented. Historically, attractive potential fields, φa, have been modeled as Gaussian

(Eq. 3.10), harmonic (Eq. 2.2), and quadratic functions (Eq. 2.3) [3, 6, 12].

φa (x, y) = −λexp

[
−
(
x− xo
α

+
y − yo
β

)]
(2.1)

φa (x, y) = −U (x cos α + y sin α) +
λ

2π
log

(
(x− xo)2 + (y − yo)2)1/2

(2.2)

φa (~x) =
1

2
(~x− xf )T Q (~x− xf ) (2.3)

Forms of repulsive potentials fields, φr, have included exponentials, Eq. (2.4)

and simple distance functions, Eq. (2.5) [6].

6



φr (~x) = λ exp

[
−(~x− ~xo)T N (~x− ~xo)

σ

]
(2.4)

φr (x, y) =
λ(

(x− xo)2 + (y − yo)2)1/2
(2.5)

Each of the formulations have what are normally referred to as shaping pa-

rameters (Q, α, β, λ, N). These parameters are usually constant and empirically

determined, but can be modeled as functions of time.

2.1.2 Drawbacks of Artificial Potential Functions. Inherent issues with

APFs include local minima within the potential space and oscillatory movement [4].

Local minima can be avoided by including perturbation algorithms in the guidance

subroutine, although it is normally more desirable (and more difficult) to design the

potential field such that these local minima do not exist. Oscillatory movement is typ-

ically addressed by setting an APF control threshold. This threshold simply prevents

the APF guidance algorithm from updating the control command until it exceeds

some minimum value. The control threshold is usually set empirically.

Additionally, APF trajectories are often abrupt and may violate rate limit con-

straints on systems such as aircraft. If rate limit constraints are imposed, care must

be taken to adjust parameter gains in order to ensure the system is still guaranteed

to be collision free. Ahsun asserted that this saturation can sometimes be avoided via

proper scaling of the potential field in areas that may cause large position errors [6].

Saturation can also be prevented in certain instances by including additional repulsive

potentials on the controls [13].

When concerned with performance measures, an APF formulation can be a poor

choice as the lack of feedback makes it inherently suboptimal and the influence of sys-

tem dynamics is often minimal or non-existent. However, APFs remain desirable due

7



to their computational efficiency. This research will focus on methods of improving

APF optimality and convergence.

2.2 Similar Methods

Methods such as stream functions and navigation functions which very similar

to APFs have been previously investigated. Both were explored as ways of mitigating

local minima and have their own unique pros and cons. Stream functions represent

a special class of harmonic functions and navigation functions are a special class of

artificial potential functions.

2.2.1 Stream Functions. A similar technique using stream functions was

investigated by Waydo [5]. Instead of following the negative gradient of a potential

field, the trajectory follows streamlines using stream functions that model inviscid,

incompressible, irrotational fluid flow. In many cases, the obstacle is modeled as a

source, the goal is modeled as a sink, and a uniform flow field is superimposed to

provide a propulsive force toward the goal as depicted in figure 2.1.

Figure 2.1: Stream function obstacle avoidance [5]
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Equation (2.6) provides an example stream function which consists of a source/sink

in uniform flow [12].

φ = −U (xcos α + ysin α) +
λ

2π
log r (2.6)

This method differs from traditional APFs in that it is free of local minima and

provides much smoother trajectories. The latter is beneficial for systems with rate

constraints. The main disadvantage of stream functions is that they are limited to

two-dimensional applications due to the nature of their formulation.

2.2.2 Navigation Functions. Another formulation that attempts to mitigate

the problem of local minima is that of navigation functions. They are designed such

that, with the exception of the global minimum at the goal, all points where the

gradient is zero are unstable saddle points [14]. The obvious benefit of this type of

potential field is that the trajectory generated is guaranteed to converge at the desired

goal with zero possibility of being trapped in a local minima. However, the creation of

a function with such characteristics has proven to be very difficult and the functions

themselves are typically very complex. As a result, significant computational power

much be used to develop the functions outside of the guidance algorithm [9]. Equation

(2.7) represents an example of a navigation function [11].

φ (q) =
γ + f(

(γ + f)k +Hnh ·G · β0

)1/k
(2.7)

9



where:

γ = ‖q − qd‖2

q and qd are vectors of states and desired states, respectively

k is a scale factor greater than zero

f is a function of G that ensures φ is always positive

H is responsible for aligning the trajectory with the desired orientation

β0 is an obstacle that bounds the workspace

G is a proximity function related to possible collisions

This equation can be better visualized by examining figure 2.2 which is an

example of a dipolar1 navigation function.

Figure 2.2: Dipolar navigation function [11]

Because of the complex formulation and substantial offline computational bur-

den, navigation functions were not further explored in this research.

1A dipolar navigation function is a special navigation function that allows a vehicle to arrive at
its destination with a specific orientation [11].
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2.3 Adaptive and Evolutionary Artificial Potential Functions

Researchers in the APF community widely recognize the need to improve perfor-

mance and robustness of these algorithm. As such, several have proposed alternative

methods of APF implementation in order to do so. These methods involve incor-

porating feedback into the APF guidance scheme as well as using what have been

termed adaptive and evolutionary APFs.

2.3.1 Basic Feedback. Healey investigated APFs for use in path tracking

for an underwater autonomous vehicle operating at constant speed and depth [8].

The goal was to minimize deviation from a desired straight-line path when currents

were present while also avoiding obstacles on and near the path. Healey began by

employing a feedback controller to drive cross track error to zero. Once the feedback

controller successfully compensated for the water current, both attractive and repul-

sive potentials were implemented within an outer loop for path planning purposes.

The attractive potential encouraged the vehicle to follow a straight line path between

way points while the repulsive potential ensured a collision free path. Recognizing

that the various APF parameters could be tuned to improve performance, Healey

noted the possibility for optimized path planning.

2.3.2 Evolutionary APFs. The use of evolutionary, or genetic, algorithms

have great appeal in optimization because they can sometimes outperform their gra-

dient based counterparts. Namely, they tend to be less sensitive to local minima in

the solution space. Genetic algorithms work by imitating the natural selection process

to evolve the best candidates to the optimal solution. Recognizing their utility, work

has been done to use genetic algorithms in conjunction with APFs to optimize the

shaping parameters with respect to a performance index.

Vadakkepat et al. developed a real-time path planning technique for robots that

used a genetic algorithm to obtain an optimal potential field by tuning the repulsive

potential parameters associated with each obstacle [7]. The research successfully
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created simple, tuned APFs that resulted from minimizing a performance index. The

authors selected three cost functions with which to optimize the APF: minimum path

length, goal-factor, and obstacle-factor. Goal-factor was minimized when the robot

was at the goal and the obstacle-factor was minimized any time the robot did not

collide with the obstacle. The optimal APF as determined by the genetic algorithm

was then one that reached the goal, avoided obstacles, and did so with the minimum

total path length. Additionally, to avoid local minima, the authors implemented

an escape force within the algorithm when it was recognized that a local minima

existed. Since the algorithm was a real-time guidance application, an optimal APF

was determined at each point along the robot trajectory meaning the APF parameters

were a function of time. This produced an algorithm that was effective for both

stationary and moving obstacles and goals. However, the authors recognized that the

trajectory obtained was a function of the type of APF chosen and suggested that

performance could be further improved by not only optimizing the APF parameters,

but also the type of APF implemented at each step.

2.3.3 Adaptive APF Techniques. While the evolutionary APF technique

focused on a way of optimizing the repulsive potential to improve performance with

respect to a cost function, others have recognized a marked increase in stability and

robustness by embedding the system dynamics into the APF formulation [3, 6, 15].

Ahsun investigated Electromagnetic Formation Flying2 (EMFF) and how to

account for disturbance torques introduced by the Earth’s magnetic field [6]. Because

of the uncertain dynamics of EMFF, this research is of particular use when considering

APF guidance in non-deterministic or stochastic environments. Ahsun’s method used

a Control Lyapunov Function3 to generate a feedback control law within the APF

guidance. This was done by choosing a form for the vehicle’s acceleration vector such

2Electromagnetic Formation Flying is a technique that uses on-board electromagnets to control
forces and torques between satellites in formation [6].

3A Control Lyapunov Function is a function used to determine if a system is stabilizable with
feedback.
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that asymptotic stability is guaranteed by Lyapunov theory. The advantage of this

method are guarantees on system robustness.

With this method, the satellites’ convergence rate tended to be slow as they

approached very near to their goal. As a result, Ahsun introduced potential function

shaping to change the shape of the gradient at the goal location. Adding the potential

function shaping essentially added a second attractive potential with a steeper slope

near the goal resulting in improved convergence time. The APF trajectories generated

through Ahsun’s method based on Lyapunov functions were then used as initial guess

for non-linear optimization techniques.

Muñoz also recognized that APFs lack consideration of the system dynamics

or a performance index [3]. He addressed this by first implementing a feedback con-

troller to track the negative gradient of the APF for satellite rendezvous operations.

He then attempted to improve APF performance by formulating an adaptive APF

(AAPF) which used an update law to determine the attractive potential weighting

parameters as a function of time. The repulsive potential weighting parameters were

left unchanged. The weighting parameters were varied such that the difference be-

tween the negative gradient of the attractive potential and a desired velocity profile

was minimized. The desired velocity profile was determined via the solution of a two

point boundary value problem, so by matching the velocity profile, the dynamics were

essentially embedded. Muñoz’s method also suffered from slow convergence near the

goal since it was approached asymptotically. As such, for satellite operations, he rec-

ommended that the guidance solution be split in into a close-range rendezvous phase

in which the AAPF scheme is used and a final approach phase to reduce maneuvering

time.

Current research by Fields has led to the development of a continuous control law

within the APF framework [15]. This method allows for the dynamics of the system

to be embedded within the APF guidance algorithm and uses them to generate a

trajectory that is guaranteed to follow a path of decreasing potential. At any given
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point, the vehicle trajectory may not point along the local negative gradient, but it

is guaranteed not to increase in potential thus satisfying convergence and obstacle

avoidance criteria. A limitation of the this approach is that the vehicle must have full

control of it’s acceleration vector. While this is of no issue to thrust-based controllers

like those on satellites, vehicles with indirect control cannot benefit from the ingenuity

of this method. Additionally, the continuous control method, like the other APF

methods, is suboptimal as it does not track a performance index.

2.4 Optimal Control Theory

Since this research compares APF guidance solutions to corresponding optimal

control solutions, it is important to briefly discuss the fundamentals of optimal control

theory. Optimal control theory strives to find a control, ~u (t) such that a performance

index is minimized while satisfying the constraints of the system dynamics and bound-

ary conditions [16]. Optimal control theory applies to both continuous and discretized

systems. Often, continuous systems are approximated by discretized systems, as is

done in this research. This discussion on optimal control theory will be brief and

limited to open final time problems due to the scope of this work. For open final time

problems, Bryson defines the following pertinent equation, Eq. (2.8), as the relevant

cost function [17].

J = φ (~x (tf ) , tf ) (2.8)

Subject to:

~̇x = f (~x (t) , ~u (t) , t) (2.9)

t0, ~x0, and ψ (~xf , tf ) = 0 (2.10)
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The dynamic4 and terminal5 constraints given by Eqs. (2.9) and (2.10) can then

be appended to the cost function to form what is termed the Lagrangian function,

Eq. (2.11). It should be noted that φ is simply tf for minimum time problems.

J̄ = φ+ νTψ +

tf∫
t0

~λT (t)
{
f [~x (t) , ~u (t) , t]− ~̇x

}
dt (2.11)

In Eq. (2.11), ~λ represents the vector of costates. From this point, the calculus

of variations is used to obtain the first order necessary conditions for a candidate min-

imum. The reader is referred to Bryson [17] or comparable optimal control resources

for the full derivation. For the purpose of this research, it will suffice to say that the

first order necessary conditions are satisfied by the solution of the Eqs. (2.12)-(2.14).

~̇x∗ (t) =
∂H

∂λ

(
~x∗ (t) , ~u∗ (t) , ~λ∗ (t) , t

)
(2.12)

~̇λ∗ (t) = −∂H
∂x

(
~x∗ (t) , ~u∗ (t) , ~λ∗ (t) , t

)
(2.13)

0 =
∂H

∂u

(
~x∗ (t) , ~u∗ (t) , ~λ∗ (t) , t

)
(2.14)

where:

H (t) = ~λT (t) f [~x (t) , ~u (t) , t] (2.15)

The form of the Hamiltonian, H, presented in Eq. (2.15) is valid only for open

final time problems. Equations (2.12)-(2.14) form the Euler-Lagrange equations and,

along with the terminal conditions, must be satisfied at each point in time for a feasible

solution to exist. Various methods for solving these equations exist to include forward

and backward sequencing the state and co-state equations (Eqs. (2.12) and (2.13),

4A dynamic constraint is a constraint that is met by the satisfaction of the equations of motion.
5A terminal constraint is a constraint that is met by the satisfaction of the boundary conditions.

15



respectively). For this research, a more direct optimization approach was used by

employing the sequential quadratic programming tool included in MATLAB R©. This

method solves nonlinear programming problems by minimizing a quadratic approxi-

mation of the Lagrangian function with linear approximations of the constraints [17].

2.5 Artificial Potential Functions and Optimal Trajectories

While Vadakkepat et al. used genetic algorithms to optimize APFs [7], Henshaw

recognized a direct link between APFs and optimal control trajectories [18]. Henshaw

proposed that optimal planning and APF guidance are related via receding horizon

planning. Receding horizon planning is a method that optimizes a trajectory over a

finite-time horizon of (t0, t+ h) as opposed to (t0, tf ). It is assumed that h is much

smaller than tf − t0. The trajectory is then implemented for a time step, δ, that is

smaller than h. As the trajectory is being followed, a new trajectory is planned for

(t+ δ, t+ h+ δ). Henshaw pointed out that an APF can be thought of as a receding

horizon problem where h = 0 and that optimal planning represents the case where

t+h = tf . With this assertion, he showed that APFs actually minimize a cost function

of the form given by Eq. (2.16).

J [~x (t) , t] =

t+δt∫
t

β
n∑
j=1

R (dist (~x (t) , cj)) dt+ E (~x (t+ δt)) (2.16)

Where:

β

n∑
j=1

R (dist (~x (t) , cj)) is the repulsive potential

E is the attractive potential

From the limits of integration, it is obvious that the APF only minimizes over the

next time step. It should be noted that Henshaw’s use of APF guidance differs slightly

from that presented so far in this research. As previously introduced, APFs were used
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to determine a control whereas Henshaw’s method uses APFs to generate waypoints.

After noting the relationship among the trajectory planners, Henshaw conducted a

case study to compare performance of the three algorithms. Each algorithm guided

a robot through a 2D field of randomly generated obstacles and the respective costs

and convergence times were recorded. As expected, the optimal trajectories generated

had a much improved cost over the APF trajectory while the computation time was

greatly reduced for the APF. The receding horizon planner produced costs much

closer to the optimal solution while exhibiting convergence times much closer to APF

guidance. In fact, for one obstacle configuration, the receding horizon planner actually

produced a lower cost that the optimal trajectory. Henshaw attributed the results to

the nonlinear optimization algorithm finding a local minima rather than the global

minimum.

2.6 Summary

As evident from the summaries provided above, the author recognizes the need

to improve APF performance while retaining computational efficiency. While various

methods have been explored, to this author’s knowledge, aside from Vadakkepat et

al. [7] and Henshaw [18], little work has been done to directly implement APFs into

an optimization scheme. This thesis aims to contribute to the APF and optimal

control research community by attempting to do so by way of a hybrid algorithm that

combines receding horizon and APF path planning.

Additionally, most prior research on APFs assumes adequate control power

is available to perform a strict gradient descent. This was likely intentional since

intuitively, neither obstacle avoidance nor goal capture can be guaranteed if a vehicle

cannot execute the control required to follow the negative gradient. However, it is

conceivable that for a vehicle with limited control authority and its corresponding

dynamics, a feasible optimal control solution may still exist. In this case, there is

obviously an attainable trajectory since the optimal control solution converged. One

of the goals in the performance characterization portion of this research is to determine
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how an APF can be manipulated such that the trajectory is driven as closely as

possible to the optimal control solution.
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III. Performance Characterization

This chapter details the methods used to characterize the performance of APFs in

dynamic, control-limited environments. A case study with a simplistic concept yet

difficult solution was selected. The test scenario to be proposed is a problem that

scales well in difficulty to test potential guidance algorithms. As related to APF

guidance, some of the difficulties of the case study include:

1. Indirect control, i.e. the control is not a force.

2. External dynamics influencing the motion

3. Terminal constraints

4. No inherent performance index in APF guidance

This chapter first seeks to perform a direct comparison of an optimal control so-

lution and an APF generated trajectory on a case study that incorporates all of above

items. Once a baseline comparison is complete, the problem will be decomposed to

address the effects of saturation, external dynamics, and indirect control individually.

Following this, an investigation will be performed to see under what conditions the

optimal and APF guidance solutions will exactly match. This will be done by manip-

ulating the terminal constraints of the case study and shaping the artificial potential

function. A continuous control APF approach will also be examined. Conclusions

will then be drawn about performance, applicability, and practicality of the methods

explored.

3.1 Simple Case Study

This case study is one of a sailboat that must cross a fixed width stream as

quickly as possible from point A to B (see figure 3.1). The stream has a span-wise

parabolic velocity profile (Eq. 3.1) flowing left to right with several sandbars.
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Figure 3.1: Sailboat problem geometry

Ustream (y) = 4Umax

( y
h2

)
(h− y) (3.1)

where:

Umax is the peak span-wise velocity

h is the stream width

y is the y-position of the sailboat

As water flows over the sandbars, constricting the depth, the water is modeled

to accelerate due to Venturi-like effects. The sandbars are assumed to be deep enough

that boundary layer effects can be neglected and that there is no risk of collision to

the sailboat. The velocity increase caused by the sandbars is modeled as a two-

dimensional Gaussian function shown in Eq. (3.2). The combined velocity profile due

to the sandbars is then simply the sum of each (Eq. 3.3).

iUsbar (x, y) =i Usbar,maxexp

(
−

(
(x−i xc)

2

2σ2
x,i

+
(y −i yc)

2

2σ2
y,i

))
(3.2)
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where:

iUsbar,max is the peak span-wise sandbar velocity of the ith sandbar

x is the x-position of the sailboat

ixc is the x-position of the center of the ith sandbar

y is the y-position of the sailboat

iyc is the y-position of the center of the ith sandbar

σx,i is the spread of the ith sandbar velocity in the x-direction

σy,i is the spread of the ith sandbar velocity in the y-direction

Usbar (x, y) =
∑

iUsbar (x, y) (3.3)

Utot (x, y) = Ustream (y) + Usbar (x, y) (3.4)

The sum of the stream and sandbar velocity profiles represents the total velocity

distribution of the stream which is given by Eq. (3.4). The contours of a representative

velocity profile are shown in figure 3.2 where the contours represent lines of constant

velocity.

The wind speed, W , and direction were fixed with the positive wind direction,

β, defined counter-clockwise from the positive x-axis. The problem objective was to

minimize the time to cross the stream with the sail direction as the only control.

Positive sail angle, θ, was defined as counter-clockwise from the positive x-axis. The

sail was assumed to be mounted to a point mass.
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Figure 3.2: Velocity contours

If the wind vector, ~W , and sail direction unit vector, ~Ψ, are defined as:

~W = W cos β î+W sin β ĵ (3.5)

~Ψ = cos θ î+ sin θ ĵ (3.6)

The magnitude of the sailboat’s velocity due to the wind is the component of

the wind that lies along the sail direction. The total velocity is then the sum of the

sailboat’s wind velocity and the stream velocity. As evident in Eq. (3.7), the stream

velocity only acts in the x-direction and therefore does not contribute to the sailboat’s

velocity in the y-direction.

~̇x = (Utot +W cos (θ − β) cos θ) î+W cos (θ − β) sin θ ĵ (3.7)
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3.1.1 Optimal Control Solution. The optimal solution was computed as a

basis of comparison with the intent of being the “best” possible solution in terms of

a performance index. Obviously, the term “best” is subjective, but in this case the

assumptions are that the vehicle is operating in a deterministic environment with full

knowledge of the system dynamics and that the discretized dynamics are a sufficient

representation of the continuous system. Given these assumptions, the optimal control

problem for minimum transit time is to minimize the performance index represented

by Eq. (3.8).

J =

tf∫
0

dt = tf (3.8)

Subject to:

~̇x = (Utot +W cos (θ − β) cos θ) î+W cos (θ − β) sin θ ĵ,

x (0) = Ax, x (tf ) = Bx

y (0) = Ay, y (tf ) = By

ẋ (0) = 0, ẋ (tf ) = 0

ẏ (0) = 0, ẏ (tf ) = 0

The discretized solution was found using the fmincon SQP solver within MATLAB R©

at the conditions outlined in Table 3.1. The derivation of the discretized equations of

motion can be found in Appendix A.

The resulting trajectory is displayed in figure 3.3. The results were intuitive

in that the boat uses the wind to sail momentarily upstream in order to avoid being

overpowered by the current as velocity increases both midstream and over sandbars.

Additionally it was found that for certain geometries (sandbar locations, peak stream

velocities, wind speed/direction, and start/end locations) no solution exists. This is
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Table 3.1: Problem geometry
Initial Final Sandbar 1 Sandbar 2 Sandbar 3

x 80 120 80 100 100
y 0 200 40 90 140
σx - - 20 30 30
σy - - 10 15 10
Usbar,max - - 2 2.5 1
Wmax 10 - - - -
β 130 - - - -
Umax 10 - - - -

also intuitive because if there is not enough wind available in the appropriate direction,

the boat cannot overcome the current. However, if no final x-position is specified, as

long as some positive vertical component of the wind exists, a feasible solution always

exists.

Figure 3.3: Minimum time trajectory
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The optimal control solution yielded a transit time of 16.95 seconds. With an

inaccurate initial guess, the algorithm took 9.9 seconds of machine time to converge

to a feasible solution on an Intel R© CoreTM i5 1.80 GHz processor. Running the same

algorithm initialized with the optimal solution took 0.66 seconds. In either scenario,

if the optimal control solution were required to be recomputed at a 10 Hz refresh

rate1, a solution would not be available by the time a guidance solution was needed.

In attempt to improve computational efficiency, a traditional APF guidance solution

was implemented next and the performance index was compared.

3.1.2 APF Solution. A simple quadratic potential field was implemented

in attempt to guide the sailboat to its desired end state. Equation (3.9) contains the

mathematical representation for the APF.

φ =
1

2
~rTQ~r (3.9)

where:

Q is a positive semidefinite weighting matrix

~r = [x− xf , y − yf ]T

A typical APF control law is represented by figure 3.4. This control law is

accurate for systems in which a change in velocity (∆~v) can be directly applied. For

systems like the sailboat, there is an extra step to determine what control will result

in the required ∆~v.

Obtaining a viable APF solution was a challenge due to the external forces

influencing the trajectory. Much research has been accomplished for systems without

external dynamics [3, 7]. However, with the sailboat problem, the inclusion of an

external force (the stream current) meant that direct determination of the control

1While a 10 Hz refresh rate would not be necessary given the actual velocity of the sailboat, it
would not be an unrealistic requirement for systems with faster dynamics.
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Figure 3.4: Artificial potential function control law diagram

(sail angle) was not possible. This is because the force required by the APF is driven

by a change in velocity, but the control is sail angle. To solve for the control, it was

assumed that the ∆~v command was achievable, although this is not always true. With

this assumption, the position at the next step was then determined. The position

was required in order to calculate the velocity of the stream at that point since

the distribution was non-uniform. Unfortunately, since the ∆~v is not necessarily

achievable, the sailboat may not actually reach that position. Given the assumed ∆~v,

the new position, and the stream velocity at that point, the required sail angle was

then computed. If no solution existed, the sail angle that caused the velocity vector

to be the closest to the commanded ∆~v was used instead.

A second issue arose because this method required ∆~v to have both direction

and magnitude in order to determine sail angle. This posed a problem because with

the current APF implementation, ∆~v magnitude is a function of the APF gain which

was empirically set. Therefore a method must be created of reliably computing the

∆~v magnitude such that the external forces may be reliably overcome.
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Various “tuning” techniques were employed in order to match the APF solution

to the OCP solution as closely as possible. For the case with no obstacles, the APF

parameters that can be manipulated are the gain (K), weighting matrix (Q), and

time step (∆t). Ideally, sensitivity to the time step should be minimized. Initial

experimentation included adjusting refresh rate and gain. The APF trajectory shown

in figure 3.5 is the result of tuning a time invariant gain.

Figure 3.5: Artificial potential function and optimal control solutions

Ultimately, the APF algorithm took 3.42 seconds to complete on the same

computer. However, in a real-time guidance sense, the entire trajectory is not needed

before an APF generated control can be implemented since the control at each time

step is a strict function of the local potential field gradient. This is contrary to the

OCP solution which by its very nature requires that the entire trajectory satisfy all

constraints before the entire control sequence is generated. Therefore, in the spirit of

real-time guidance, a better comparison would be the time required to compute each

step which on average took 0.0124 seconds. While the APF algorithm has a clear

advantage in computational efficiency, the optimal control solution has the advantage

with respect to the performance index. Although the APF does not attempt to

minimize the chosen performance index, the end result can still be compared to that

of the OCP. The APF solution resulted in a total transit time of 14.4 seconds. While
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this is faster than the OCP solution, it is important to note that the APF violated

the terminal constraints outlined for the OCP in both position and velocity. This is

due to the absence of feedback and control saturation in the APF algorithm.

The above comparison does not in fact represent the most accurate comparison

between the two guidance methods. The OCP solution was meant to represent the

best possible solution with respect to the cost function given that the stream velocity

profile is known. With such a solution known, it would be desirable to determine how

the APF guidance algorithm may be manipulated to duplicate the results.

To more accurately compare the algorithms from a real-time guidance perspec-

tive, the OCP solution can be recomputed without the stream velocity profile known.

This is based on the assumption that in a realistic scenario, a controller would not

have explicit knowledge of the external dynamics present. The control sequence that

minimized transit time would then be used to propagate the full equations of motion.

In this scenario, the new OCP solution is likely to lead to performance worse than

that of the APF since the knowledge of the intended goal state is lost2. This scenario

is likely if the velocity profile is unknown, a varying wind is present, or stochastic

variations or uncertainties exist within the system dynamics. However, the APF re-

tains knowledge of the goal via the minimum in the potential field and directs the

vehicle toward the minimum at every iteration.

The propagated OCP solution crossed the stream in 13.29 seconds and took 5.93

seconds to compute. As predicted, figure 3.6 shows that the OCP solution performs

worse than the APF solution when it has no knowledge of the stream dynamics.

The left side of figure 3.6 shows the APF-generated trajectory and the trajectory

from the propagated OCP control sequence overlaid on the stream’s velocity contours.

The right side represents the same trajectories overlaid on the contours of the artificial

2It should be noted that there are ways to formulate the optimal control solution to account for
such uncertainty without propagating an “ignorant” OCP-generated control sequence, but it was
the author’s intent to demonstrate how APF performance falls between a best case and worse case
optimal control problem.
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Figure 3.6: Artificial potential function and optimal control solutions with no
knowledge of stream current

potential field. Table 3.2 summarizes the comparison between all three proposed

trajectories.

Table 3.2: Results summary for APF and OCP guidance
Final x-position Final y-position tf Total Run Time

OCP 120.0 200 16.95 9.90
Propagated OCP 174.7 200 13.29 5.93
APF 145.7 200 14.40 3.42

3.2 Parametric Study

Before attempting a hybrid method in support of the primary research objec-

tive, it is important to further characterize APF performance. A parametric study

was performed on various APF formulations by varying the peak span-wise velocity

of the stream’s parabolic profile. The velocity variation due to sandbars was omitted

in all cases leaving solely a parabolic velocity variation. The first part of the study

set equal APF gains, shaping parameters, and refresh rates. For the initial phases,

the sailboat was exchanged for a motorboat with thrusters and unlimited control au-

thority was assumed. The intent of this phase was to observe the effect of increasing

external forces on the gradient-following capability. The second phase implemented
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a maximum allowable thrust to examine the effects of both external forces and sat-

uration. Additionally, multiple types of attractive potentials were examined in each

phase.

3.2.1 Motorboat Phase 1. Phase one consisted of varying peak span-wise

velocities with no restriction on control authority by allowing unlimited thrust to ob-

serve performance of both Gaussian and quadratic APFs. Trajectories were generated

from a Gaussian attractive potential given by Eq. 3.10.

φa (x, y) = −λexp

[
−
(
x− xo
α

+
y − yo
β

)]
(3.10)

Table 3.3 lists the conditions under which both algorithms were run. There was

assumed to be no influence from the sandbars in the parametric study.

Table 3.3: Summary of parametric study test conditions
Wmax 10
β 130
Usbar,max none

Figure 3.7 (A) demonstrates that when the stream velocity is zero, the mo-

torboat can perfectly descend along the APF gradient and reach the goal with zero

velocity. Figures 3.7 (B-D) show that as velocity is increased and all other parameters

remain unchanged, the motorboat can no longer follow the negative gradient of the

APF. This is because the system dynamics are unaccounted for in the APF formula-

tion. When the force is applied and the equations of motion are propagated forward,

the stream current forces the motorboat downstream of its commanded position. This

can be observed in figure 3.8 which is a zoomed in version of figure 3.7 (B).
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Figure 3.7: Gaussian attractive potential for varying peak velocities and unsatu-

rated control

Figure 3.8: Gaussian attractive potential, Umax = 10, commanded vs. actual posi-
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In figure 3.8, the red triangles represent the boat position if the APF-commanded

∆~v for that particular time step is propagated with no external forces. By inspec-

tion, the associated velocities are aligned with the negative gradient of the APF. The

blue dots represent the actual boat position when applying the commanded ∆~v and

propagating the full equations of motion. Ideally, these markers would lie on top of

one another.

It is interesting to note that as the velocity of the stream approaches zero, the

APF-generated forces dominate and guide the motorboat back to the goal. Unfor-

tunately, this behavior cannot be generalized for all velocity profiles. For example,

a uniform stream velocity distribution would not decrease toward zero near the goal

and the APF generated forces alone would be be insufficient to guide the motorboat

to the goal.

If the APF gain is increased high enough and the time step is decreased small

enough, the trajectory approaches that of figure 3.7 (A) (i.e. perfect gradient descent).

The problem in doing so is that the gains and time steps required to compensate for

the system dynamics are physically unrealizable. However, even if perfect gradient

descent is not practical or possible, benefits of employing APF guidance may still exist.

Namely, if the APF-generated force is sufficient relative to the system dynamics,

convergence and obstacle avoidance may still be possible. Figure 3.9 shows that

similar results were obtained when a quadratic attractive potential (Eq. 3.9) was

used.
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Figure 3.9: Quadratic attractive potential for varying peak velocities and unsatu-
rated control

3.2.2 Motorboat Phase 2. This phase mirrored the previous analysis, but a

maximum allowable thrust was introduced to examine the effects of control saturation.

In each case, the algorithm limited the maximum δ~v per step to 0.1. Since the vehicle

was assumed to be a point mass, this was equivalent to a maximum allowable thrust.

By inspection of figure 3.10 (A), it would appear that perfect gradient descent

is possible even with the saturated case for a stream velocity of zero. However,

examining the motorboat velocity profile shows this not to be the case. While the

trajectory projection onto the 2D plane is in fact aligned with the negative gradient

of the APF, the thrust saturation prevents the magnitude of the desired velocity

from being captured. This causes a violation in the terminal constraint on velocity.

This is more obvious by examining figure 3.10 (B-D) which are unable to capture

the desired goal in both position and velocity. Additionally, if the gradient cannot

be followed, then no guarantees exist for obstacle avoidance. As with phase 1, the

quadratic attractive potential displayed similar results (Fig. 3.11).
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Figure 3.10: Gaussian attractive potential for varying peak velocities and saturated

control

Figure 3.11: Quadratic attractive potential for varying peak velocities and saturated

control
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Obviously, control saturation combined with external forces can negatively effect

convergence of the guidance algorithm to the desired state. It is possible this negative

impact on convergence can be avoided if the algorithm is designed to perform a

reachability analysis and use the results to adjust the potential function such that the

desired states are achievable.

Table 3.4 summarizes the results of each of the studies. The unrealistic transit

times of the unsaturated Umax = 0 cases should be noted. The ∆~v commands required

by the algorithm to exactly follow the negative gradient of the potential field are quite

large and in may cases would be physically unrealizable. Similarly, the Umax = 0

saturated cases have a much slower transit time. This is because of the small ∆~vmax

chosen for illustration purposes. In the remaining cases, the stream current helps to

accelerate the motorboat and faster transit times are observed.

Table 3.4: Summary of parametric study results
Phase 1 (Unsaturated)

Case APF Type Transit Time (sec) Total Distance X-distance from Goal

Umax = 0
Gaussian 4.7 203.96 0
Quadratic 2.1 203.96 0

Umax = 2
Gaussian 20.0 209.72 0
Quadratic 14.5 208.38 0

Umax = 5
Gaussian 20.1 231.86 0
Quadratic 14.5 225.48 0

Umax = 10
Gaussian 20.5 289.08 0
Quadratic 14.5 265.78 0

Phase 2 (Saturated)
Case APF Type Transit Time (sec) Total Distance X-distance from Goal

Umax = 0
Gaussian 204.3 203.96 0
Quadratic 204.2 203.96 0

Umax = 2
Gaussian 55.3 210.50 0.01
Quadratic 22.6 209.86 13.42

Umax = 5
Gaussian 55.1 239.04 0.03
Quadratic 22.1 223.21 33.47

Umax = 10
Gaussian 55.1 276.33 185.60
Quadratic 21.9 256.59 106.84
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3.2.3 Sailboat. For vehicles such as the sailboat, an indirect control must

be introduced within the APF formulation. Continuing the parametric study to the

sailboat allows the effects of indirect control to be observed. It is expected based

on the initial results in Section 3.1 that the results will be similar to the saturated

motorboat study. Figure 3.12 shows how the sailboat trajectory varies as a function

of stream velocity.

Figure 3.12: Sailboat trajectory for quadratic APF guidance

Using sail angle as a control essentially saturates the maximum allowable ∆~v

where the maximum is a function of the wind speed, W , and sail angle minus wind

direction, θ − β. It is reasonable to assume that with a high enough wind, the

sail-controlled results would approach that of the unsaturated motorboat parametric

study. However, without an additional control for drag, the sailboat has no means

to slow down while also descending along the APF gradient. It is also important to

note that due to the θ − β functionality of the saturation, the maximum allowable

∆~v is variable. Therefore, the wind speed would need to be much higher (and time

step much smaller) than its parametric study counterparts and would greatly depend

on wind direction. While these are noticeable differences between the studies, the
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conclusion is the same: convergence and obstacle avoidance cannot be guaranteed

without further modification to the algorithm.

In addition to saturation, the computational burden of the solution increases

because the algorithm must solve a system of nonlinear equations at every time step to

determine the required angle. Experimentally, this has not shown to be a significant

increase in computation time. This is likely because the equations often have no

solution due to the saturation induced by indirect control power. When no solution is

found, the algorithm points the sail along the unit vector in the direction of the new

desired velocity even though the magnitude is unattainable. If drag is included as an

additional control, then the issue of how to distribute control power is introduced.

This problem is not unique to APF guidance, but nonetheless must be adequately

addressed for the algorithm to successfully converge upon the goal.

3.3 Trajectory Matching via APF Tuning

As evident in Section 3.1, tuning the APF parameters, i.e. adjusting the APF

gain and strength, did not provide an exact match to the OCP solution. This explores

whether eliminating some of the constraints of the sailboat problem will result in

better matching of the two trajectories. The influence of the sandbars was removed

and the maximum stream velocity was gradually decreased to zero. As the span-wise

velocity approached zero, the lack of external forces influencing the dynamics allowed

the APF to guide the sailboat exactly along the negative gradient of the potential

field and reach the goal state as demonstrated in Section 3.2. However, the result

was still suboptimal when the transit time was compared with the optimal control

solution because the optimal path uses favorable winds to improve the performance

index.

In attempt to further simplify the problem, the constraint on final x-position was

removed. With this scenario, the final position from the optimal control solution was

upstream from the starting position since it caused the sailboat to sail into the wind

to increase velocity. The APF, however, traversed a line perpendicular to the shore
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with the final x-position equal to the starting x-position. Both results are pictured

in figure 3.13. With no x-position specified for the goal, the negative gradient of the

potential function points perpendicularly toward the y = h contour at every point. In

general, this behavior increases the transit time of the sailboat under APF guidance,

but will only exactly match the optimal trajectory when β = 90◦.

Figure 3.13: Sailboat path with APF and OCP free final x-position

Noting that the APF can be optimal under this condition, the APF can be

slightly reformulated to force the gradient parallel to the wind direction. While leav-

ing the OCP solution as open final x-position, the APF goal state can be specified as

the final x and y position of the OCP solution (see figure 3.14). Clearly this behav-

ior, while desirable, could only be achieved with gross simplifications to the original

problem statement.
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Figure 3.14: Sailboat path with APF fixed final x-position and OCP free final
x-position

3.4 Potential Function Fitting

From Section 3.3, it is clear that for time invariant APF gains, the trajectory can

only match the optimal solution in very limited applications with gross simplifications

to the problem statement. However, it may be possible to fit an APF trajectory to a

desired optimal trajectory.

3.4.1 Static APF Parameters. The APF trajectory is influenced by the lo-

cation and strength of repulsive and attractive potentials, therefore by adding pseudo-

obstacles and/or intermediate goal states it may be possible to more closely match a

known trajectory with static shaping parameters.

The number of pseudo-obstacles being introduced was varied with the assump-

tion that more obstacles would allow for closer matches. The radius and position

of the obstacles were optimized by minimizing the difference between the APF and

OCP trajectories. At first glance, this methods appears to trade one optimal control

problem for another. While this is true, there are possible advantages to be had in

doing so. By optimizing the parameters of the pseudo-obstacles, it is conceivable that
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the formulation of the optimal control problem may be simplified thus providing some

increase in computational efficiency.

The repulsive potential of each obstacle was held constant, but may be left

free to vary if so desired. First the pseudo-obstacles were distributed evenly in the

y-direction and the x-position was optimized. For a fixed y-position, the repulsive

potential for each obstacle has 2n parameters to optimize, where n represents the

number of obstacles. For a free y-position, this will double to 4n. However, in either

case the time to compute the optimal positions should be greatly decreased from the

time to compute the optimal control trajectory. This is partly because the number of

parameters to optimize is greatly decreased. More importantly, the computation time

should decrease because it is now a static optimization problem. The APF trajectory

was constrained to finish at the x and y position of the goal.

Figure 3.15: Optimized pseudo-obstacle position for fixed y location

While better APF-generated trajectories were obtained as indicated in figure

3.15, adding pseudo-obstacles proved to be an ineffective way of trajectory matching

due to extended computation time. All run times were upwards of 300 seconds. This

was contrary to expectations due to the small number of parameters to optimize. Ad-

ditionally, the matching did not reliably contribute to the convergence of the APF to

the final goal in terms of velocity without substantially burdening the optimizer. This

was because to ensure convergence, the optimizer required final velocity constraints in
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addition to final position constraints. When the additional velocity constraints were

implemented, the optimizer was not able to find a feasible solution.

Figure 3.16: Optimized pseudo-obstacle position for free y location

As predicted, the matches improved with the number of obstacles added but

not as much as expected. In general, the more obstacles added, the closer the fit

can be made. However, this increases the number of parameters to be optimized

thus increasing computation time substantially. Surprisingly, the results did not vary

substantially when the y position of the obstacles was left free to vary. Figure 3.16

shows the solutions for both n = 3 and n = 5 for free y position. While it is quite

possible there is simply a greater dependence on x position and radius, this may also

be indicative of the optimizer finding local minima instead of global minima in the

solution space. The latter seems more likely given that the obstacles did not vary

greatly from their initial positions. This was especially true for the y positions of the

obstacles. Table 3.5 summarizes the output from the obstacle position optimization.
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Table 3.5: Pseudo-obstacle optimization summary

n = 3

Fixed y Free y
r x y r x y

10.64 99.18 0 10.69 99.40 -0.03
13.48 90.87 100 13.22 94.55 99.93
12.69 100.716 200 11.48 100.46 199.57

n = 5

Fixed y Free y
r x y r x y

9.33 100.22 0 9.80 100.12 -0.03
10.22 97.50 50 9.70 96.54 49.50
7.89 108.30 100 7.70 108.60 103.24

11.19 102.95 150 11.36 103.78 149.90
9.27 100.50 200 8.96 100.46 200.78

Trajectory matching in this fashion also requires significant off-line computation

time to find the optimal trajectory which would likely be detrimental to real-time

guidance applications. Alternative methods that can correct the trajectory en-route

would be more desirable in terms of computation time.

3.5 Continuous Control

While gradient descent is highly desirable due to its computational efficiency,

the methodology has no inherent knowledge of the system dynamics other than the

satisfaction of dynamics from the forward propagation of states. One approach to

remedy this deficiency is to develop a continuous control solution. A desirable con-

tinuous control solution uses knowledge of the system dynamics along with gradient

descent to drive the vehicle to its desired end state. Such a method was developed by

Fields who defined a velocity potential such that ~̇r is driven to −∇φ [15].

φv =
1

2

(
−∇φ− ~̇r

)T (
−∇φ− ~̇r

)
(3.11)
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where:

φv is the velocity potential

φ is the position potential

~r is the position vector

Equation (3.11) is a quadratic defined in the velocity space with a minimum at

−∇φ. By taking the time derivative of the velocity potential, Eq. (3.12) is obtained.

φ̇v =
(
−∇φ− ~̇r

)T (
−H (φ) ~̇r − ~̈r

)
(3.12)

where H (φ) is the Hessian of the position potential

Fields then defined the acceleration as:

~̈r = −H (φ) ~̇r −Kd

(
∇φ+ ~̇r

)
(3.13)

where Kd is a positive definite diagonal gain matrix

Substituting Eq. (3.13) into Eq. (3.12) then yields the following expression for

the time rate of change of the velocity potential:

φ̇v = −2
(
−∇φ− ~̇r

)T
Kd

(
−∇φ− ~̇r

)
(3.14)

Fields noted that by inspection, the solution of Eq. (3.14) is a decaying expo-

nential when Kd is positive definite, thus the requirement for ~̇r to be driven to −∇φ

is satisfied. The continuous control law results from substituting Eq. (3.13) into the

system dynamics and solving for the required control.
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Like the APF methods previously applied in this research, the continuous control

solution is suboptimal. However, since the solution has built-in knowledge of the

system dynamics, it will converge exponentially to the goal state. It is important to

note that in order to employ the continuous control solution described in Eq. (3.11),

the system must be fully actuated, i.e., direct control of the vehicle’s acceleration

must be available. Therefore, this method is applicable to the motorboat problem,

but not the sailboat.

The motorboat problem will be studied to examine whether the continuous

control solution will indeed account for the dynamics caused by the stream current

and drive the vehicle to the goal.

For the motorboat, the system dynamics are defined as:

~vi = (U + Vx,i) î+ Vy,iĵ (3.15)

~xi+1 =
(
~̇xi + ∆~vi

)
∆t (3.16)

where U is the stream velocity and

Vx,i, Vy,i are the x and y components of the motorboat velocity

The resulting trajectory of the motorboat is shown in figure 3.17. The time

histories (as shown in figure 3.18) clearly show exponential convergence to the goal

states.

The rate at which the convergence occurs is directly related to the gain matrix

Kd and the shaping of the position potential as defined by Q. Higher values of the

Kd diagonals cause the goal state to be approached more rapidly, but do so at the

expense of control. Similarly, as Q steepens the position potential, the goal will be

reached more quickly.
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Figure 3.17: Motorboat trajectory using continuous control

Figure 3.18: Motorboat time histories using continuous control
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3.6 Summary

The results have shown that for the chosen velocity profile, multiple forms of

APF guidance can guarantee convergence to the goal if the vehicle is fully actuated

and unsaturated. However, as saturation increases, the likelihood of convergence

decreases. This is not to say that convergence with saturation is impossible, but it is

greatly dependent on the amount of saturation present and the external dynamics. It

was also shown that the indirect control actuation essentially behaved as a variable

saturation. Furthermore, it has been observed that behavior is dependent on the

nature of the dynamic environment.

Additionally, alignment of the OCP and APF generated trajectories was shown

to be possible, but the circumstances under which it occurs is so limited that it

would not be practical for general use. The results also showed that the APF can be

statically shaped by introducing false obstacles, but the process is too computationally

expensive to be practical.

Embedding the system dynamics via the continuous control method proved to be

the only way to guarantee convergence, but its use is limited to fully actuated systems.

Each of these findings support both the performance characterization portion of the

primary research objective and the secondary objective of determining the suitability

of APFs for different classes of problems.

The computational benefit of APF guidance was demonstrated by the quick

run times recorded, however, the bulk of the discussion on APFs with respect to

cost function will be relegated to Chapter 4. This is because that while total cost is

important and of interest, it is irrelevant without convergence. Therefore, in support

of the primary goal of this research, Chapter 4 will develop and implement a hybrid

algorithm that incorporates both APF guidance and optimal control with the intent of

improving both convergence and cost for saturated control in a dynamic environment.
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IV. Hybrid Algorithm Development and Application

This chapter details the development of a hybrid guidance algorithm that uses both

receding horizon and artificial potential function planning with the intent of address-

ing the weaknesses of APF path planning outlined in Chapter 3. The utility of the

algorithm will be assessed based on its application to the case studies introduced in

the previous chapter.

4.1 Receding Horizon

As mentioned in Chapter 2, a receding horizon (RH) solution approaches the

optimal control solution as the horizon, h, approaches tf . In practice, h is much less

than tf . The optimal control must be determined at each t0 + h. The control, which

is discretized over each horizon, is then applied over some δ < h. The process then

repeats until the desired end state is reached. Figure 4.1 represents the RH process

pictorially.

Figure 4.1: Receding horizon planning illustration

The benefit of this method is that it is typically much faster to repeatedly

compute optimal control solutions over a subset of the problem than to compute the

optimal control solution over the entire trajectory space at once. Additionally, it is

better suited to real time guidance since a smaller OCP must be computed at each

update. It is also more desirable when external dynamics or uncertainty are relevant.
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For example, the sailboat (or motorboat) guidance algorithms have no knowledge

of the stream current. As shown in the parametric study in Chapter 3, an APF

algorithm with no knowledge of the system dynamics is subject to drift and faces loss

of convergence guarantees. It was also observed that for a system with no saturation,

convergence of the APF trajectory was guaranteed but performance (in terms of a

cost function) was lacking.

While RH planning seems like an excellent alternative to the optimal control

method previously presented, there must be an effective method for estimating the

cost-to-go (CTG). The cost-to-go refers to the cost to get from x (t+ δ) to ~x (tf ).

Henshaw suggested that an appropriate measure of CTG was the value of the attrac-

tive potential at x (t+ δ). This formulation guarantees that performance will be no

worse than that of the baseline APF. However, as evident from previous results, the

baseline APF alone is inadequate for guarantees on performance when external dy-

namics influence the vehicle’s motion. One of the other drawbacks of receding horizon

planning is that it shares some of the weaknesses of optimal control path planning.

Perhaps the most important weakness is that, in general, there is no guarantee a

feasible solution will be found. Because of this major drawback, a supplemental path

planner would be necessary to ensure robustness.

Given these observations, the weaknesses of both APF and RH path planning

may be mitigated by directly supplementing an RH planner with APF guidance.

Assuming a feasible solution is found, the RH planner will then perform at least as

well as if not better than the APF planner via the potential field evaluation in the

cost function. In the absence of a feasible solution, the APF planner will take over

for the next horizon.

4.2 Hybrid Guidance

A hybrid algorithm was developed first for the unsaturated, fully actuated mo-

torboat problem to perform the following actions:
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(1) Compute the discretized trajectory from initial to final state using the baseline

APF.

(2) Use the designated horizon, h, to determine the intermediate goal state from

the current discretized APF trajectory.

(3) Determine the control sequence to minimize Eq. (4.1) to the intermediate goal.

(4) Implement the control sequence from (3) over the time step, δ.

(5) Repeat steps (1)-(4) while updating the initial state to that of the current state

until the vehicle has arrived at the final goal state.

The intent of this method is to use APF guidance to avoid obstacles and ensure

convergence while improving performance with respect to a cost function given by

Eq. (4.1). However, even the combined RH-APF method is subject to drift for the

same reasons outlined in Chapter 3. This means that the intermediate goal states

commanded by the APF may not be reachable. As a result, it may be necessary to

perform a linear analysis on the system and make corrections to the applied controls

to ensure the states required for convergence or collision avoidance are captured.

J =

t+h∫
t

dt+ φa (~x (t+ δ) , ~xd) (4.1)

where:

h is the time horizon

δ is the time step

φa is the attractive potential

~xd is the final goal state

The APF trajectory will provide a baseline trajectory and the intermediate goal

states to the receding horizon planner. The RH algorithm will then determine the

appropriate control to minimize transit time to the next goal state. This improves
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performance in several ways: the RH planner improves performance with respect

to the cost function while hopefully remaining significantly more computationally

efficient than the OCP and the APF alleviates the RH planner from the burden of

accounting for obstacles via inequality constraints.

4.2.1 Effects of Time Horizon and Time Step Variation. First, the hybrid

RH-APF guidance algorithm’s performance was analyzed with respect to the time

horizon and time step. The analysis was performed on the thruster-powered motor-

boat example from the previous chapter for the case Umax = 5 where Umax is the

maximum span-wise velocity of the stream. The time step was initially fixed and the

horizon was gradually increased. This process was repeated for various length time

steps. A minimum step of 0.5 seconds was used due to excessive computation times

at smaller values. Table 4.2 summarizes the results at each test condition.

Table 4.1: Effects of varying time step and horizon for RH-APF hybrid algorithm
δ = 0.5 tf (sec) Time per step (sec) Total Run Time (sec)
h = 0.5 26.6375 0.0976 9.3754
h = 1.0 27.8606 0.0839 4.9514
h = 1.5 27.9439 0.0990 4.8559
h = 2.0 27.2852 0.1195 5.2612
h = 5.0 37.0534 0.2015 13.1032
h = 10.0 42.9991 0.5593 47.5473

δ = 1.0 tf (sec) Time per step (sec) Total Run Time (sec)
h = 1.0 20.8080 0.2288 9.8407
h = 1.5 21.4226 0.2169 6.7275
h = 2.0 21.0987 0.2449 6.3703
h = 2.5 20.6702 0.2461 5.6627
h = 5.0 23.5886 0.2968 4.4544
h = 10.0 17.6938 0.6318 28.9236

δ = 1.5 tf (sec) Time per step (sec) Total Run Time (sec)
h = 1.5 18.2053 0.4561 12.7737
h = 2.0 18.6316 0.4616 10.1581
h = 2.5 18.2291 0.4601 8.7441
h = 5.0 12.9793 0.4871 3.4125
h = 10.0 21.0839 0.8044 10.4599
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The horizon, h, had the greatest effect on the final time and total computation

time of the algorithm. As h increased, the initial trend was for computation time to

drop. However, as h became much larger than δ, computation time began to increase

drastically. The latter trend was expected given that as h increases, the fixed horizon

optimal control problem is approached. The tendency for computation to increase as

h approaches δ may seem unusual at first glance, but it is easily explainable. As the

time horizon decreases, the number of calls to the optimization subroutine increases.

Additionally, there is a minimum computation time associated with each run of the

optimizer. This means that there exists some value of h that is greater than δ such

that total computation time is minimized. The same trend was observed for final

time. This may seem counter intuitive because letting h approach tf would represent

the optimal solution. However, since the optimizer does not have full knowledge

of the environment, smaller horizons actually provide a better solution since more

corrections can be made following propagation of the equations of motion. Figures

4.2, 4.3, and 4.4 show the trajectory variation for a sampling of the horizon and time

step settings.

Figure 4.2: Trajectory comparison, δ = 0.5 sec

Varying the time step size mostly influenced the average computation time per

step. Smaller time steps were associated with smaller computation time per step.

This measure of performance is very important when considering real-time guidance
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applications. The maximum allowable time per step would be directly related to

the update rate of the guidance system. This indicates the need for a sensitivity

analysis for each unique application of the hybrid guidance method to determine the

most suitable time horizon and time step. The remaining analysis will be performed

assuming that the guidance system has a refresh rate of 10 Hz. Therefore, based

on the tabulated results and a 10 Hz refresh rate, the time horizon and time step

combination chosen for the remaining analysis was h = 1.5 s and δ = 0.5 s.

Figure 4.3: Trajectory comparison, δ = 1.0 sec

Figure 4.4: Trajectory comparison, δ = 1.5 sec

4.2.2 Results from Saturated Motorboat Case Study. The analysis of the

hybrid RH-APF guidance algorithm was continued for the saturated motorboat case
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study at the same conditions as the parametric study of Section 3.2.2 to determine

whether the hybrid algorithm was in fact an improvement on the results previously

obtained. The settings of the APF portion of the hybrid algorithm were unchanged

from the Chapter 3 methodology. The receding horizon planner was run with a horizon

and step of 1.5 and 0.5 seconds respectively. For consistency, the ∆t was set at 0.1

seconds. Figure 4.5 shows the results plotted alongside the Chapter 3 data from the

saturated case study for comparison. The unsaturated case study was forgone since

the results would exactly equal the baseline quadratic APF performance. This was

because in order to minimize time, the optimizer will drive the controls to infinity

and lead to an infeasible solution.

Figure 4.5: Trajectory comparison of hybrid and baseline APF methods
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As indicated by figure 4.5, the biggest improvement over both baseline APF

algorithms was, surprisingly, the convergence to the goal state in both position and

velocity. Some improvement was anticipated due to the optimization occurring within

the RH subroutine, but the drastic difference from the baseline APF convergence was

not expected. Based on the differences evident in the Chapter 3 saturated and un-

saturated figures, it appears as if the RH portion of the hybrid planner has mitigated

some of the effects of saturation. In the interest of due diligence, a thorough review of

the algorithm was performed with particular attention paid to the saturation settings.

While no discrepancies were discovered, the possibility of an error within the algo-

rithm exists as an alternative explanation. Table 4.2 compares overall performance

between the algorithms to include run time and total cost. Not surprisingly, the hy-

brid algorithm took longer to compute than the APF due to the receding horizon

planning subroutine. In terms of cost (transit time), the hybrid greatly outperformed

the baseline APFs for the Umax = 0 case. For the remaining cases, the final time

fell between the Gaussian and quadratic APF performance, but more closely to the

quadratic.

Table 4.2: Comparison of hybrid algorithm performance with baseline APF data
for saturated motorboat case study

Saturated Motorboat
Case APF

Type
tf (sec) Total Distance x-distance

from Goal
Total Run Time

(sec)

Umax = 0
Gaussian 204.3 203.96 0 0.3115
Quadratic 204.2 203.96 0 0.5765
Hybrid 26.3632 203.96 0 4.6412

Umax = 2
Gaussian 55.3 210.50 0.01 0.0771
Quadratic 22.6 209.86 13.42 0.1224
Hybrid 27.4274 205.25 0 4.6703

Umax = 5
Gaussian 55.1 239.04 0.03 0.1084
Quadratic 22.1 223.21 13.47 0.1239
Hybrid 27.9439 211.48 0 4.9206

Umax = 10
Gaussian 55.1 276.33 185.60 0.1102
Quadratic 21.9 256.59 106.84 0.1091
Hybrid 32.5071 229.44 0 4.9908
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4.2.3 Results from Sailboat Case Study. Like the motorboat, the sailboat

trajectory was also improved by implementing the RH-APF guidance algorithm. How-

ever, due to the indirect control of the sailboat, convergence remained problematic.

Figure 4.6 shows the comparison between the trajectories generated by baseline APF

and the RH-APF.

Figure 4.6: Trajectory comparison of hybrid and baseline APF methods for sailboat
case study
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As expected, the hybrid algorithm had larger total computation times for each

case due to the optimization subroutine. However, the computation time per step was

not greatly increased. While the hybrid algorithm did not converge to the goal state,

it did manage to get closer to the goal than the baseline APF in each case. As evident

in figure 4.6, performance of the hybrid algorithm began to degrade and approach the

baseline APF as the stream velocity neared Umax = 10. The deceivingly small final

transit times recorded for each algorithm in Table 4.3 are a result of failure to converge

on the desired final velocity. In other words, due to the saturation induced by the

indirect control, the sailboat cannot adequately decelerate as the goal is approached.

Table 4.3: Comparison of hybrid algorithm performance with baseline APF data
for sailboat case study

Sailboat Case Study
Case APF

Type
tf (sec) Total Distance x-distance

from Goal
Total Run Time

(sec)

Umax = 0
Quadratic 8.2 203.96 0 0.0788
Hybrid 10.5 203.96 0 6.9477

Umax = 2
Quadratic 8.3 221.08 6.8525 1.3158
Hybrid 10.5 204.49 5.7783 7.2534

Umax = 5
Quadratic 8.1 249.94 15.8611 1.3222
Hybrid 10.0 211.03 13.9908 7.2611

Umax = 10
Quadratic 8.0 254.17 28.1262 1.3823
Hybrid 10.0 221.08 27.8583 7.9648

4.3 Summary

The results show marked, albeit surprising, improvement in all measures of

performance when the RH-APF algorithm was implemented. Total cost was greatly

decreased and computation time per step could be managed by the appropriate selec-

tion of time horizon and time step. While these results are promising, the unexpected

convergence of the saturated case studies remain highly suspect. Further review of

the hybrid algorithm is recommended to trace possible errors in implementation.

The RH-APF sailboat results matched more closely with expectations. Con-

vergence remained an issue due to the reachability of the desired states. Because of

56



the limited control authority exacerbated by the indirect control, the required force

to reach a commanded state was often unattainable. Not only does this prevent the

vehicle from reaching the desired goal, but obstacle avoidance is no longer guaran-

teed. Recognizing this limitation, future work on the hybrid algorithm would benefit

from determining in advance whether a commanded state can be reached and use the

results to shape the APF such that convergence and obstacle avoidance are possible.
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V. Conclusions

The primary objective of this research was to examine APF performance when ap-

plied to systems with limited control authority and external dynamics and use the

findings to develop a hybrid guidance algorithm that balanced computational effi-

ciency and optimality. This was done by implementing APF and optimal control

guidance schemes on simplified case studies.

The research confirmed that not only was APF guidance lacking in performance

with respect to a cost function, but it could not guarantee convergence while operating

in dynamic environments. Additionally, it was shown that due to high computation

times, optimal control can be infeasible when a high refresh rate is required. How-

ever, performance with respect to both computation time and cost was improved by

hybridizing the APF approach with receding horizon planning. Results showed that

for the RH-APF hybrid, computation time was improved from the optimal control

solution while improving the convergence and cost from the baseline APF solution.

While the hybrid method greatly improved performance for a saturated system

in dynamic environment, this was limited to the direct control case. Slight improve-

ments were seen for the indirect control within a dynamic environment, but conver-

gence could not be guaranteed with the current state of the algorithm. Based on this

initial data, the hybrid approach shows promise in regard to implementation within a

real-time guidance scheme, however, it must be further vetted before its effectiveness

can be guaranteed.

The secondary objective of this research was to determine what classes of prob-

lems are well-suited to APFs or APF-hybrids. The analysis performed suggests that

the utility of artificial potential functions alone can be highly case specific. For exam-

ple, the APF guidance algorithm performed the best when applied to a fully actuated

system with limited saturation. Additionally, when subjected to external dynamics,

the type of the dynamics can greatly effect the success of the APF guidance algorithm.

Initial data shows that APF guidance is best supplemented with alternative guidance

methods, such as receding horizon optimal control planning, to ensure guarantees can
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be made on performance with respect to both cost functions and convergence. This

was shown to be especially true when the vehicle of interest was subjected to external

forces as well as control authority limitations.

While this work investigated the utility of various guidance methods with respect

to minimum transit time problems, results may vary by exploring alternative cost

functions such as minimum control effort, minimum distance traveled, etc. By doing

so, it may be evident that the guidance methods in question are better suited toward

a specific class of optimization problems. Additionally, there is work to be done in

order to improve the RH-APF hybrid for systems with indirect control. A potential

solution to this problem includes linearization of the system dynamics in order to

perform a reachability analysis. Specifically, it may be useful to locally linearize the

system dynamics at each time step of the algorithm to estimate if a commanded state

may be reached. If the linear analysis predicts the state to be unreachable, then it

would be desirable to use some measure of the degree to which a state cannot be

reached in order to apply a correction within the guidance algorithm. The author

would like to investigate using such a measure to shape the attractive potential as a

function of time.
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Appendix A. Sailboat Equations of Motion Derivation

This appendix presents the derivation of the discretized equations of motion for the

sailboat.

Assuming acceleration is directly proportional to the wind velocity and drag, D,

V̇sw = Vwcos (θ − β)−D (A.1)

Where:

Vsw is the sailboat velocity due to the wind

Vw is the wind velocity

θ is the sail direction

β is the wind direction

D is the drag force

The controls to be found are sail direction and drag. Integrating Eq. (A.1) across the

time step, with θ, D, and the wind parameters assumed constant over the time step,

Vsw(∆T )∫
Vsw(0)

dVsw =

∆T∫
0

{Vwcos (θ − β)−D} dT (A.2)

Vsw (∆T ) = Vsw (0) + ∆T {Vwcos (θ − β)−D} (A.3)

The total stream velocity, VR, is described by the following relationship:
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VR = 4
VRM
h2

y (∆T ) (h− y (∆T )) (A.4)

Where:

VRM is the peak parabolic stream velocity

h is the fixed stream width

y (∆T ) is the y-position at time at time ∆T

The velocity in the y-direction is described by Eq. (A.5).

ẏ (∆T ) = vsw (∆T ) sin θ (A.5)

Where:

vsw is the y-component of the sailboat velocity due to the wind

Substituting Eq. (A.3) into Eq. (A.5) and integrating,

y(∆T )∫
y(0)

dy =

∆T∫
0

{vsw (0) + [Vwcos (θ − β)−Dy]∆T} sin θ dT (A.6)

y (∆T ) = y (0) + ∆T

{
vsw (0) +

∆T

2
[Vwcos (θ − β)−Dy]sin θ

}
(A.7)

Similarly, in the x-direction:
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ẋ = VR + Vswcos θ (A.8)

Substituting the expressions for VR and Vsw and separating variables, the following

equation can be integrated. For brevity, the expression for y (∆T ) was not substituted

into Eq. (A.9) but was accounted for during actual integration.

x(∆T )∫
x(0)

dx =

∆T∫
0

{
4
VRM
h2

y (∆T ) (h− y (∆T )) + Vsw (0) + ∆T [Vwcos (θ − β)−D]

}
dT

(A.9)

Equation (A.10) is the final expression for x-position.

x (∆T ) =x (0) + ∆T {usw (0) + C (0) cosT (0)}+
4VRM
h2

{
∆T 4

4
[Dy (0) vsw (0)

− C (0) sinT (0) vsw (0)] + h[
∆T 3

6
(C (0) sinT (0)−Dy (0))

+
vsw (0) ∆T 2

2
+ y (0) ∆T ]− ∆T 3

3
[v2
sw (0)−Dy (0) y (0) + C (0) sinT (0) y (0)]

−∆Ty2 (0)− ∆T 5

20
[C2 (0) sinT2 (0)− 2C (0)Dy (0) sinT (0) +D2

y (0)]

−∆T 2vsw (0) y (0) dotted(A.10)
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Appendix B. MATLAB R© Code

Listing B.1: Quadratic APF for Motorboat

1 function [r,v,dv,theta ,grad_pot ]= sailboatAPF_quad

clear;clc;close all

h = 200; % Stream width

d = 40; % x-dist to target

6 U_max = 10;% Max stream velocity (center)

Beta = 130;% Wind direction (pos. CCW from x-axis)

W_max = 10;% Wind speed

W = [W_max*cosd(Beta);W_max*sind(Beta)];

x1 = h/2 - d/2;

11 x2 = h/2 + d/2;

A = [x1; 0];% Starting point , A

B = [x2; h];% Ending point , B

% Sandbar (Gaussian velocity distribution over ellipse)

16 sbar.xc = [80 100 100]; % X-position of ellipse center(s)

sbar.yc = [40 90 140]; % Y-position of ellipse center(s)

sbar.a = [20 30 30]; % Ellipse semi -major axes

sbar.b = [10 15 10]; % Ellipse semi -minor axes

sbar.Vsmax = 0*[.2* U_max .25* U_max .1* U_max];

21 % Note that this velocity adds to U_max.

% If a total velocity is specified be sure to subtract U_max

% Obstacles

obst.xc = [100 110 110 120 120 120];

obst.yc = [ 25 50 75 100 125 150];

26 obst.rad= 0*[ 20 30 20 20 20 20];

obst.mu = [1/5 1/5 1/5 1/5 1/10 1/10];

%% APF parameters

Q1 = 1/500* eye (2); % position % attractive potential ...

weighting matrix

Q2 = 0/100* eye (2); % velocity

31 mu = 1/5; % repulsive potential
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pot_ang = .00001;

K =100*[1 0;0 1]; % gain matrix

%% Simulation

36 dt = 0.1;

dv_max = 1;

r(:,1) = A;

v(:,1) = [0 ,0];

theta (:,1) = 130;

41 Psi(:,1) = [cosd(theta);sind(theta)];

U(:,1) = vel_prof(A,U_max ,h,sbar);

start = tic;

i = 2;

while abs(r(2,i-1)-h) >0.1 && r(2,i-1)<h

46 inner = tic;

grad_pot(:,i-1) = att_grad_pot(r(:,i-1)-B,v(:,i-1),Q1,Q2)+...

rep_grad_pot(r(:,i-1),Q1 ,obst);

if norm(v(:,i-1)) 6=0

ang(i) = ...

acosd(dot(v(:,i-1)/norm(v(:,i-1)) ,(-grad_pot(:,i-1))/...

51 norm(grad_pot(:,i-1))));

else

ang(i) = acosd(dot(v(:,i-1) ,(-grad_pot(:,i-1))));

end

if ang(i) > pot_ang

56 dv(:,i) = -K*grad_pot(:,i-1)-v(:,i-1);

if abs(norm(dv(:,i)))>dv_max % saturation alg.

dv(:,i) = dv_max*dv(:,i)/norm(dv(:,i));

end

else

61 dv(:,i) = [0;0];

end

[r(:,i),v(:,i),r_apf(:,i)] = ...

EOM(r(:,i-1),v(:,i-1),dv(:,i),Beta ,W_max ,...

U_max ,h,sbar ,dt);
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elapsed_time(i-1) = toc(inner);

66 i = i+1;

end

toc(start)

h1 = openfig('ocp.fig','reuse '); % uncomment if OCP run @ ...

same conditions

71 ax1 = gca;

fig1 = get(ax1 ,'children ');

xdat_ocp = get(fig1 ,'xdata ');

ydat_ocp = get(fig1 ,'ydata ');

h2 = figure;

76 s1 = subplot (1,2,1);

copyobj(fig1 ,s1); hold on; box on

colormap cool

t = 0:dt:( length(r) -2)*dt;

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.')

81 axis ([0 h 0 h]);axis square

xlabel('x-distance ');ylabel('y-distance ')

subplot (1,2,2)

[X,Y] = meshgrid(linspace (0 ,200 ,50),linspace (0 ,200 ,50));

for k = 1:50;

86 for j = 1:50;

pfield(k,j) = 0.5*[X(k,j)-B(1); Y(k,j)-B(2)]'*Q1*...

[X(k,j)-B(1);Y(k,j)-B(2)];

end

end

91 contour(X,Y,pfield);hold on

colormap cool

plot(xdat_ocp {1,1}, ydat_ocp {1,1},'ko','markerfacecolor ','k')

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.')

axis ([0 h 0 h]); axis square

96 xlabel('x-distance ');

figure
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n = 20;

clear X Y pfield

101 [X,Y] = meshgrid(linspace(0,h,n),linspace(0,h,n));

for k = 1:n;

for j = 1:n;

pfield(k,j) = [X(k,j)-B(1); ...

Y(k,j)-B(2)]'*Q1*[X(k,j) -...

B(1);Y(k,j)-B(2)];

106 end

end

contour(X,Y,pfield ,n);hold on

colormap cool

111 for k = 1:n

d = [X(k,:);Y(k,:)];

for j = 1:n

P = -B+d(:,j);

grad(:,j)= Q1*P; % add repulsive potential

116 end

quiver(d(1,:),d(2,:) ,-K(1,1)*grad (1,:) ,-K(2,2)*grad (2,:) ,...

0.25,'color ' ,[.1 .7 .9]) ;hold on

end

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.',r_apf (1,2:(end -1)) ,...

121 r_apf (2,2:(end -1)),'r^')

axis ([0 h 0 h]); axis square

xlabel('x-distance ');ylabel('y-distance ')

str = ['U_{max} = ',num2str(U_max)];

title(str)

126

figure

open ocp2.fig % uncomment if OCP solution has been run @ same ...

conditions

subplot (4,1,1)

% plot(t,theta (1:(end -1)),'b.');hold on;xlim ([0 t(end)])

131 ylabel('\theta (t)')
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subplot (4,1,2)

plot(t,sqrt(sum(v(:,1:(end -1)).^2 ,1)),'b.');hold ...

on;xlim ([0 t(end)])

ylabel('V(t)')

subplot (4,1,3)

136 plot(t,r(1,1:(end -1)),'b.');hold on;xlim ([0 t(end)])

ylabel('x(t)')

subplot (4,1,4)

plot(t,r(2,1:(end -1)),'b.');hold on;xlim ([0 t(end)])

xlabel('time');ylabel('y(t)')

141 end

%% Attractive potential

function grad = att_grad_pot(r,v,Q1,Q2) %grad of attractive ...

potential

146 % Quadratic potential function

grad = Q1*r + Q2*v; % position and velocity goal state

end

%% Repulsive potential

function grad = rep_grad_pot(r,Q,obst)

151

for i = 1: length(obst.xc)

r_obs = [obst.xc(i);obst.yc(i)];

P_inv = 1/obst.rad(i)^2*eye(2);

if obst.rad(i)==0

156 grad(:,i)=[0;0];

else

grad(:,i) = ...

obst.mu(i)/((r-r_obs)'*P_inv *(r-r_obs) -1)*(eye(2) - ...

P_inv *(r-r_obs)*r'/((r-r_obs)'*P_inv *(r-r_obs) -1))*Q*r;

end

161 end

grad = sum(grad ,2);

end
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%% Velocity profile

function U = vel_prof(r,U_max ,h,sbar)

166

x = r(1);

y = r(2);

U = 4*U_max*y.*(h-y)./(h^2);

171 xc = sbar.xc;

yc = sbar.yc;

sig_x = sbar.a;

sig_y = sbar.b;

Vsmax = sbar.Vsmax;

176 Vs = 0;

for k = 1: length(xc)

temp = ...

Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -((y-yc(k)).^2) /...

(2* sig_y(k)^2));

Vs = Vs+ temp;

181 clear temp

end

U = [U+Vs;0];

end

%% Equations of motion

186 % function V = EOM(r,theta ,Beta ,W_max ,U_max ,h,sbar)

function [R,V,R_apf] = EOM(r,vel ,dv,Beta ,W_max ,Umax ,h,sbar ,dT)

x0 = r(1);

191 y0 = r(2);

u0 = vel (1);

v0 = vel (2);

Dy = 0; % for now

196 u = u0+dv(1);

v = v0+dv(2);
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x = ...

x0+dT*(u0+(dT/2)*dv(1)/dT)+(4* Umax/(h^2))*(dT ^4*((Dy*v0)/4 ...

...

-(dv(2)/dT*v0)/4)+h*(((dv(2)/dT)/6-Dy/6)*dT^3+(v0*dT^2) /2+...

201 y0*dT)-dT^3*(v0^2/3 -(Dy*y0)/3+(dv(2)/dT*y0)/3)-dT*y0^2-...

dT ^5*((dv(2) ^2/dT^2) /20 ...

-(Dy*dv(2)/dT)/10+Dy ^2/20) -dT^2*v0*y0);

y = y0 + dT*(v0+(dT/2)*(dv(2)/dT-Dy));

R = [x;y];

R_apf = [x0+u*dT;y0+v*dT];

206 V = [u;v];

end
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Listing B.2: Quadratic APF for Sailboat

function [r,v,dv,theta ,grad_pot ]= sailboatAPF_quad_theta

3 clear;clc;close all

h = 200; % Stream width

d = 40; % x-dist to target

U_max = 0;% Max stream velocity (center)

Beta = 130;% Wind direction (pos. CCW from x-axis)

8 W_max = 10;% Wind speed

W = [W_max*cosd(Beta);W_max*sind(Beta)];

x1 = h/2 - d/2;

x2 = h/2 + d/2;

A = [x1; 0];% Starting point , A

13 B = [x2; h];% Ending point , B

% Sandbar (Gaussian velocity distribution over ellipse)

sbar.xc = [80 100 100]; % X-position of ellipse center(s)

sbar.yc = [40 90 140]; % Y-position of ellipse center(s)

18 sbar.a = [20 30 30]; % Ellipse semi -major axes

sbar.b = [10 15 10]; % Ellipse semi -minor axes

sbar.Vsmax = [.2* U_max .25* U_max .1* U_max];

% Note that this velocity adds to U_max.

% If a total velocity is specified be sure to subtract U_max

23 % Obstacles

obst.xc = [ 85];

obst.yc = [100];

obst.rad= [0];

28 %% APF parameters

Q1 = 1/500* eye (2); % attractive potential weighting matrix

mu = 1/5; % repulsive potential

pot_ang = .00001;

K =1*[1 0;0 1]; % gain matrix

33

%% Simulation
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dt = 0.1;%.5;

r(:,1) = A;

v(:,1) = [0 ,0];

38 theta (:,1) = 130;

Psi(:,1) = [cosd(theta);sind(theta)];

U(:,1) = vel_prof(A,U_max ,h,sbar);

start = tic;

i = 2;

43 while abs(r(2,i-1)-h) >0.1 && r(2,i-1)<h

inner = tic;

grad_pot(:,i-1) = att_grad_pot(r(:,i-1)-B,Q1)+...

rep_grad_pot(r(:,i-1),Q1 ,mu ,obst);

if norm(v(:,i-1)) 6=0

48 ang(i) = ...

acosd(dot(v(:,i-1)/norm(v(:,i-1)) ,(-grad_pot(:,i-1))/...

norm(grad_pot(:,i-1))));

else

ang(i) = acosd(dot(v(:,i-1) ,(-grad_pot(:,i-1))));

end

53 if ang(i) > pot_ang

dv(:,i) = -K*grad_pot(:,i-1)-v(:,i-1);

R(:,i) = r(:,i-1) + (v(:,i-1)+dv(:,i)).*dt;

U(:,i) = vel_prof(R(:,i),U_max ,h,sbar);

Psi0 = Psi(:,i-1);

58 [Psi(:,i),¬,flag] = ...

fsolve(@(Psi0)psisolve(W_max ,Beta ,v(:,i-1) +...

dv(:,i),Psi0 ,dt),Psi0);

if flag == 1

theta(:,i) = atan2d(Psi(2,i),Psi(1,i));

else

63 Psi(:,i) = ...

(v(:,i-1)+dv(:,i))./norm((v(:,i-1)+dv(:,i)));

theta(:,i) = atan2d(Psi(2,i),Psi(1,i));

end

else
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dv(:,i) = [0;0];

68 Psi(:,i) = Psi(:,i-1);

theta(:,i) = theta(:,i-1);

end

[r(:,i),v(:,i)] = ...

EOM(r(:,i-1),v(:,i-1),theta(:,i),Beta ,W_max ,...

U_max ,h,sbar ,dt);

73 r_apf(:,i) = r(:,i-1)+dt*(v(:,i-1)+dv(:,i));

elapsed_time(i-1) = toc(inner);

i = i+1;

end

total_time = toc(start)

78 % Plotting

h1 = openfig('dumbocp.fig','reuse ');

ax1 = gca;

fig1 = get(ax1 ,'children ');

xdat_ocp = get(fig1 ,'xdata ');

83 ydat_ocp = get(fig1 ,'ydata ');

figure

subplot (1,2,1)

[x,y,V_prof ]= sailboat_velocity_prof_gauss(sbar ,U_max ,h);

[C,hc]= contour(x,y,V_prof ,15);hold on

88 vec = 0:1.5:( U_max+max(sbar.Vsmax));

set(hc ,'levellist ',vec ,'textlist ',vec ,'showtext ','on','labelspacing ' ,...

250,'textlist ' ,0:3:( U_max+max(sbar.Vsmax)))

t = 0:dt:( length(r) -2)*dt;

colormap cool

93 plot(xdat_ocp {2,1}, ydat_ocp {2,1},'ko','markerfacecolor ','k')

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.')

axis ([0 h 0 h]); axis square

xlabel('x-distance ');ylabel('y-distance ')

legend('Velocity Contours ','Position (OCP)','Position ...

(APF)' ,...

98 'location ','northwest ')

subplot (1,2,2)
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[X,Y] = meshgrid(linspace (0 ,200 ,50),linspace (0 ,200 ,50));

for k = 1:50;

for j = 1:50;

103 pfield(k,j) = 0.5*[X(k,j)-B(1); ...

Y(k,j)-B(2)]'*Q1*[X(k,j) -...

B(1);Y(k,j)-B(2)];

end

end

contour(X,Y,pfield);hold on

108 colormap cool

plot(xdat_ocp {2,1}, ydat_ocp {2,1},'ko','markerfacecolor ','k')

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.')

axis ([0 h 0 h]); axis square

xlabel('x-distance ');

113 legend('APF Gradient Contours ','Position (OCP)','Position ...

(APF)' ,...

'location ','northwest ')

figure

n = 20;

clear X Y pfield

118 [X,Y] = meshgrid(linspace(0,h,n),linspace(0,h,n));

for k = 1:n;

for j = 1:n;

pfield(k,j) = [X(k,j)-B(1); ...

Y(k,j)-B(2)]'*Q1*[X(k,j) -...

B(1);Y(k,j)-B(2)];

123 end

end

contour(X,Y,pfield ,n);hold on

colormap cool

128 for k = 1:n

d = [X(k,:);Y(k,:)];

for j = 1:n

P = -B+d(:,j);
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grad(:,j)= Q1*P; % add repulsive potential

133 end

quiver(d(1,:),d(2,:) ,-K(1,1)*grad (1,:) ,-K(2,2)*grad (2,:) ,...

0.25,'color ' ,[.1 .7 .9]) ;hold on

end

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.',r_apf (1,2:(end -1)) ,...

138 r_apf (2,2:(end -1)),'r^')

axis ([0 h 0 h]); axis square

xlabel('x-distance ');ylabel('y-distance ')

str = ['U_{max} = ',num2str(U_max)];

title(str)

143

figure

open ocp2.fig % uncomment if OCP solution has been run @ same ...

conditions

subplot (4,1,1)

plot(t,theta (1:(end -1)),'b.');hold on;xlim ([0 t(end)])

148 ylabel('\theta (t)')

subplot (4,1,2)

plot(t,sqrt(sum(v(:,1:(end -1)).^2 ,1)),'b.');hold ...

on;xlim ([0 t(end)])

ylabel('V(t)')

subplot (4,1,3)

153 plot(t,r(1,1:(end -1)),'b.');hold on;xlim ([0 t(end)])

ylabel('x(t)')

subplot (4,1,4)

plot(t,r(2,1:(end -1)),'b.');hold on;xlim ([0 t(end)])

xlabel('time');ylabel('y(t)')

158 end

%% Attractive potential

function grad = att_grad_pot(r,Q1) %grad of attractive potential

163 % Quadratic potential function

grad = Q1*r;
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end

%% Repulsive potential

function grad = rep_grad_pot(r,Q,mu,obst)

168

for i = 1: length(obst.xc)

r_obs = [obst.xc(i);obst.yc(i)];

P_inv = 1/obst.rad(i)^2*eye(2);

if obst.rad(i)==0

173 grad(:,i)=[0;0];

else

grad(:,i) = mu/((r-r_obs)'*P_inv *(r-r_obs) -1)*(eye(2) ...

- ...

P_inv *(r-r_obs)*r'/((r-r_obs)'*P_inv *(r-r_obs) -1))*Q*r;

end

178 end

grad = sum(grad ,2);

end

%% Velocity profile

function U = vel_prof(r,U_max ,h,sbar)

183

x = r(1);

y = r(2);

U = 4*U_max*y.*(h-y)./(h^2);

188 xc = sbar.xc;

yc = sbar.yc;

sig_x = sbar.a;

sig_y = sbar.b;

Vsmax = sbar.Vsmax;

193 Vs = 0;

for k = 1: length(xc)

temp = Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -...

((y-yc(k)).^2) /(2* sig_y(k)^2));

Vs = Vs+ temp;

198 clear temp
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end

U = [U+Vs;0];

end

%% Equations of motion

203 function [R,V,R_apf] = EOM(r,vel ,theta ,Beta ,W_max ,Umax ,h,sbar ,dT)

x0 = r(1);

y0 = r(2);

u0 = vel (1);

208 v0 = vel (2);

Dy = 0; % for now

C = W_max*cosd(theta -Beta);

cosT = cosd(theta);

213 sinT = sind(theta);

u = u0 + dT*(C*cosT);

v = v0 + dT*(C*sinT -Dy);

218 x = ...

x0+dT*(u0+(dT/2)*(C*cosT))+(4* Umax/(h^2))*(dT ^4*((Dy*v0)/4 ...

...

-(C*sinT*v0)/4)+h*(((C*sinT)/6-Dy/6)*dT^3+(v0*dT^2) /2+y0*dT)...

-dT^3*(v0^2/3 -(Dy*y0)/3+(C*sinT*y0)/3)-dT*y0^2-...

dT ^5*((C^2* sinT ^2)/20-(C*Dy*sinT)/10+Dy ^2/20) -dT^2*v0*y0);

y = y0 + dT*(v0+(dT/2)*(C*sinT -Dy));

223

R = [x;y];

R_apf = [x0+u*dT;y0+v*dT];

V = [u;v];

228 end

function Psi = psisolve(W_max ,Beta ,vel ,Psi0 ,dT)
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du = vel (1);

233 dv = vel (2);

Dy=0;

theta = atan2d(Psi0 (2),Psi0 (1));

C = W_max*cosd(theta -Beta);

cosT = cosd(theta);

238 sinT = sind(theta);

Psi = [du - dT*(C*cosT);

dv - dT*(C*sinT -Dy)];

end
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Listing B.3: Continuous Control APF for Motorboat

function [r,v,dv,theta ,grad_pot ]= sailboatAPF_CC

3 clear;clc;close all

h = 200; % Stream width

d = 40; % x-dist to target

U_max = 5;% Max stream velocity (center)

Beta = 130;% Wind direction (pos. CCW from x-axis)

8 W_max = 10;% Wind speed

W = [W_max*cosd(Beta);W_max*sind(Beta)];

x1 = h/2 - d/2;

x2 = h/2 + d/2;

A = [x1; 0];% Starting point , A

13 B = [x2; h];% Ending point , B

% Sandbar (Gaussian velocity distribution over ellipse)

sbar.xc = [80 100 100]; % X-position of ellipse center(s)

sbar.yc = [40 90 140]; % Y-position of ellipse center(s)

18 sbar.a = [20 30 30]; % Ellipse semi -major axes

sbar.b = [10 15 10]; % Ellipse semi -minor axes

sbar.Vsmax = [0* U_max 0* U_max 0* U_max];

% Note that this velocity adds to U_max.

% If a total velocity is specified be sure to subtract U_max

23 obst.xc = [120];

obst.yc = [160];

obst.rad= [10];

%% APF parameters

28 Q = 1/2.5* eye(2); % attractive potential weighting matrix

mu = 0; % repulsive potential

N = 1/500* eye(2);

pot_ang = .1;

Kd =3; % gain matrix

33

%% Simulation
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dt = .1;

r(:,1) = A;

v(:,1) = [0 ,0];

38 theta (:,1) = 40;

Psi(:,1) = [cosd(theta);sind(theta)];

U(:,1) = vel_prof(A,U_max ,h,sbar);

i = 2;

43 while abs(r(2,i-1)-h)≥0.5

F(:,i) = ...

cont_contr(r(:,i-1),v(:,i-1),U_max ,h,sbar ,obst ,Kd,Q,mu,N,B);

v(:,i) = EOM(r(:,i-1),v(:,i-1)+F(:,i)*dt,U_max ,h,sbar);

r(:,i) = r(:,i-1)+dt*v(:,i);

i = i+1;

48 if i >6000 break

end

end

thr_ang = atan2d(F(2,:),F(1,:));

loc = find(thr_ang <0);

53 thr_ang(loc) = thr_ang(loc)+360;

% open ocp.fig

t = 0:dt:( length(r) -2)*dt;

figure (1)

[X,Y] = meshgrid(linspace (0 ,200 ,50),linspace (0 ,200 ,50));

58 for k = 1:50;

for j = 1:50;

pfield(k,j) = 0.5*[X(k,j)-B(1); Y(k,j)-B(2) ]'*...

Q*[X(k,j)-B(1);Y(k,j)-B(2)];

end

63 end

contour(X,Y,pfield);hold on

colormap cool

xlabel('x-distance ');ylabel('y-distance ')

plot(r(1,1:(end -1)),r(2,1:(end -1)),'b.')

68 axis ([0 h 0 h])
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legend('APF Gradient Contours ','Position ...

(APF)','location ','northwest ')

figure (2)

subplot (3,1,1)

73 plot(t,sqrt(sum(v(:,1:(end -1)).^2 ,1)),'b.');hold on

ylabel('V(t)')

subplot (3,1,2)

plot(t,r(1,1:(end -1)),'b.');hold on

ylabel('x(t)')

78 subplot (3,1,3)

plot(t,r(2,1:(end -1)),'b.');hold on

xlabel('time');ylabel('y(t)')

end

83 %% Attractive potential

function grad = att_grad_pot(r,Q) %grad of attractive potential

% No change from satellite APF code

grad = Q*r;

88 end

%% Repulsive potential

function grad = rep_grad_pot(r,N,mu,obst)

for i = 1: length(obst.xc)

if obst.rad(i)>0

93 r_obs = r-[obst.xc(i);obst.yc(i)];

grad(:,i) = -mu*exp(-r_obs '*N*r_obs)*N*r_obs;

else grad(:,i) = [0;0];

end

end

98 grad = sum(grad ,2);

end

%% Hessian
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103 function H = hess_pot(r,M,obst ,N,mu)

H_rep = zeros (2);

for i = 1: length(obst.xc)

if obst.rad(i)>0

r_obs = r-[obst.xc(i);obst.yc(i)];

108 H_rep = H_rep+mu*exp(-r_obs '*N*r_obs)*(2*N*r_obs*r_obs '*N-N);

end

end

H_att = M;

H = H_att+H_rep;

113 end

%% Velocity profile

function U = vel_prof(r,U_max ,h,sbar)

x = r(1);

118 y = r(2);

U = 4*U_max*y.*(h-y)./(h^2);

xc = sbar.xc;

yc = sbar.yc;

123 sig_x = sbar.a;

sig_y = sbar.b;

Vsmax = sbar.Vsmax;

Vs = 0;

for k = 1: length(xc)

128 temp = ...

Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -((y-yc(k)).^2) /...

(2* sig_y(k)^2));

Vs = Vs+ temp;

clear temp

end

133 U = [U+Vs;0];

end

%% Equations of motion

function V = EOM(r,dv,U_max ,h,sbar)
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138 x = r(1);

y = r(2);

U = 4*U_max*y.*(h-y)./(h^2);

xc = sbar.xc;

143 yc = sbar.yc;

sig_x = sbar.a;

sig_y = sbar.b;

Vsmax = sbar.Vsmax;

Vs = 0;

148 for k = 1: length(xc)

temp = ...

Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -((y-yc(k)).^2) /...

(2* sig_y(k)^2));

Vs = Vs+ temp;

clear temp

153 end

Vx = U+Vs+dv(1); % Stream only provides velocity in x-dir

Vy = 0+dv(2);

V = [Vx;Vy];

158 end

%% Continuous control law

function F = cont_contr(r,v,U_max ,h,sbar ,obst ,Kd,Q,mu,N,B)

x = r(1);

163 y = r(2);

dUstr = 4*U_max*v(2)*(h-2*y)/(h^2);

xc = sbar.xc;

yc = sbar.yc;

sig_x = sbar.a;

168 sig_y = sbar.b;

Usmax = sbar.Vsmax;

dUsbar = 0;
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for k = 1: length(xc)

temp = ...

-Usmax(k)*((x-xc(k))*v(1)/( sig_x(k).^2) -(y-yc(k))*v(2) /...

173 (sig_y(k)^2)).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -...

((y-yc(k)).^2) /(2* sig_y(k)^2));

dUsbar = dUsbar + temp;

clear temp

end

178 dUx = dUstr + dUsbar;

dUy = 0;

H = hess_pot(r,Q,obst ,N,mu);

grad_pot = att_grad_pot(r-B,Q)+rep_grad_pot(r,N,mu,obst);

183

accel = -H*v-Kd*( grad_pot+v);

F(1) = -dUx + accel (1);

F(2) = -dUy + accel (2);

188 F = F';

end
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Listing B.4: Optimal Control Main Run File

1 clear;clc;close all

% Required input

h = 200; % Stream width

d = 40; % x-dist to target (∆ b/w start and finish x ...

positions)

U_max = 10; % Max stream velocity (centerline; not including ...

sandbar)

6 Beta = 130; % Initial wind direction (pos. CCW from x-axis)

W_max = 10; % Wind speed (knots)

Dx = 0;

% Sandbar (Gaussian velocity distribution over ellipse)

11 sbar.xc = [80 100 100]; % X-position of ellipse center(s)

sbar.yc = [40 90 140]; % Y-position of ellipse center(s)

sbar.a = [20 30 30]; % Ellipse semi -major axes

sbar.b = [10 15 10]; % Ellipse semi -minor axes

sbar.Vsmax = [.2* U_max .25* U_max .1* U_max];

16 % Note that this velocity adds to U_max.

% If a total velocity is specified be sure to subtract ...

U_max or

% acceleration will be huge.

obst.xc = [85]; % Obstacle location

obst.yc = [100];

21 obst.rad= [0]; % Obstacle radius

% Discretized points

N = 30;

26 % Use previous solution as initial guess

% (comment out if no data available or changing N)

load z_star.mat

z0 = z_star; clear z_star

31 % Optional input (oscillatoroy wind speed and freq)
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varB = 0; % Variation in beta;

freqB = 0; % Beta oscillation frequency

varW = 0; % Variation in wind speed

freqW = 0; % Wind speed oscillation frequency

36

% Start and Finish Points

x1 = h/2-d/2; % Center start point on graph based on dimensions

x2 = h/2+d/2; %

A = [x1 0]; % Starting point , A

41 B = [x2 h];

% Oscillatory functions

% Create oscillatory wind speed and direction

tBeta = 0:N-1;

46 if varB 6=0

Beta = Beta+varB*cos(freqB*tBeta);

end

if varW 6=0

W_max= W_max+varW*cos(freqW*tBeta+pi/2);

51 end

% Optimization

% Initialize optimizer

theta_guess = 110* ones(1,N);

56 Dy_guess = 5*ones(1,N);

tf_guess = 18;

if ¬exist('z0','var') % Create initial guess if no data loaded

z0 = [theta_guess Dy_guess tf_guess ];

61 end

%set upper and lower limits on decision input vector (added by ...

J. Agte)

lb =[(Beta -90)*ones(1,size(theta_guess ,2)) ...

0*ones(1,size(Dy_guess ,2)) 0];
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ub =[( Beta +90)*ones(1,size(theta_guess ,2)) ...

2*ones(1,size(Dy_guess ,2)) 200];

66

% Run optimizer

tic

options = ...

optimset('algorithm ','sqp','display ','iter','tolcon ',1e-6,...

'MaxFunEvals ' ,100000,'MaxIter ' ,10000);

71 [z_star ,J_star ]= fmincon(@sailboat_obj ,z0 ,[],[],[],[],lb,ub ,...

@(z)sailboat_con_gauss(z,N,A,B,h,U_max ,W_max ,...

Beta ,sbar ,obst ,Dx) ,...

options);

toc

76 save('z_star.mat','z_star ')

[g_star ,h_star ,g_gradDUM ,h_gradDUM ,...

x_star ,y_star ,xd ,yd ,u_sw_star ,v_sw_star ]=...

sailboat_con_gauss(z_star ,N,A,B,h,U_max ,W_max ,Beta ,sbar ,obst ,Dx);

opt_traj = [x_star;y_star ];

81 save('opt_traj.mat','opt_traj ')

sprintf('Max inequality constraint = %0.5g\n',max(g_star))

sprintf('Max equality constraint = %0.5g\n',max(h_star))

sprintf('Final time = %1.2f sec\n',z_star(end))

86

% Get solution

theta_star = z_star (1:N) ';

Dy_star = z_star(N+1:2*N)';

tf_star = z_star(end);

91 t = 0: tf_star /(N):tf_star;

% Added last control input for completeness (added by J. Agte)

theta_star(N+1) = theta_star(N);

Dy_star(N+1)=Dy_star(N);

96

% Plot velocity distribution and contours
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[x,y,V_prof ]= sailboat_velocity_prof_gauss(sbar ,U_max ,h);

figure (1)

plot3(x,y,V_prof)

101 figure (2)

xlabel('x-distance ');ylabel('y-distance ');zlabel('Velocity ')

[C,hc]= contour(x,y,V_prof ,15);hold on

% clabel(C) % Label contours (kind of crowded ...)

106 vec = 0:1.5:( U_max+max(sbar.Vsmax));

set(hc ,'levellist ',vec ,'textlist ',vec ,'showtext ','on','labelspacing ' ,...

250,'textlist ' ,0:3:( U_max+max(sbar.Vsmax)))

colormap cool

111 xlabel('x-distance ');ylabel('y-distance ')

plot(x_star ',y_star ','ko','markerfacecolor ','k'); % Plot boat

a=0:0.01:2* pi;

for j=1: length(obst.xc);

116 xp=obst.rad(j)*cos(a);

yp=obst.rad(j)*sin(a);

plot(obst.xc(j)+xp ,obst.yc(j)+yp ,'r');

end

121 axis ([0 h 0 h]);

legend('Velocity Contours ','Position (OCP)')

% Save a copy to plot APF on top

saveas(gcf ,'ocp.fig')

% Plot control

126 figure (4)

plot(t,theta_star ,'bo')

xlabel('Time'); ylabel('Sail Angle (deg)')

% Plot time histories

131 v = [xd;yd];

figure (5)
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subplot (5,1,1)

plot(t,theta_star ,'ko');hold on

xL = get(gca ,'XLim');

136 yL = get(gca ,'YLim');

ylabel('\theta (t)')

subplot (5,1,2)

plot(t,Dy_star ,'ko');

ylabel('D_y(t)')

141 subplot (5,1,3)

plot(t(1:end),sqrt(sum(v.^2,1)),'ko');hold on

ylabel('V(t)'); xlim(xL)

subplot (5,1,4)

plot(t,x_star ,'ko');hold on

146 ylabel('x(t)')

subplot (5,1,5)

plot(t,y_star ,'ko');hold on

xlabel('time');ylabel('y(t)')

% Save for APF overplots

151 saveas(gcf ,'ocp2.fig')
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Listing B.5: Optimal Control Objective File

function J = sailboat_obj(z)

tf = z(end);

4 J = tf;

Listing B.6: Optimal Control Constraint File

1 function [g,h,g_grad ,h_grad ,x,y,xd,yd,u_sw ,v_sw] = ...

sailboat_con_gauss(z,N,A,B,h,U_max ,W_max ,Beta ,sbar ,obst ,Dx)

% Get states

theta = z(1:N) ';

6 Dy = z(N+1:2*N) ';

tf = z(end);

% Set initial starting point and velocity (added by J. Agte)

x(1) = A(1);

11 y(1) = A(2);

u_sw (1) = 0;

v_sw (1) = 0;

xd(1) =0;

yd(1) =0;

16

% Some misc for the following equations (added by J. Agte)

dT = tf/N;

C = W_max .*cosd(theta -Beta);

sinT = sind(theta);

21 cosT = cosd(theta);

Vrm = U_max;

for i=1:N

26 u_sw(i+1) = u_sw(i)+dT*(C(i)*cosT(i)-Dx);
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v_sw(i+1) = v_sw(i)+dT*(C(i)*sinT(i)-Dy(i));

x(i+1) = ...

x(i)+dT*(u_sw(i)+(dT/2)*(C(i)*cosT(i)-Dx))+(4* Vrm/(h^2))*...

(dT^4*(( Dy(i)*v_sw(i))/4 -(C(i)*sinT(i)*v_sw(i))/4) +...

h*(((C(i)*sinT(i))/6-Dy(i)/6)*dT^3+( v_sw(i)*dT^2)/2+y(i)*dT)...

31 -dT^3*( v_sw(i)^2/3 -(Dy(i)*y(i))/3+(C(i)*sinT(i)*y(i))/3) -...

dT*y(i)^2-dT ^5*((C(i)^2* sinT(i)^2) /20 ...

-(C(i)*Dy(i)*sinT(i))/10+Dy(i)^2/20) -dT^2* v_sw(i)*y(i));

y(i+1) = y(i)+dT*(v_sw(i)+(dT/2)*(C(i)*sinT(i)-Dy(i)));

end

36

xd(2:N+1)=diff(x)./(tf/N);

yd(2:N+1)=diff(y)./(tf/N);

% Inequality constraints

g = [];

41

h=[ y(end)-B(2);% Must finish at point B

x(end)-B(1);

u_sw(end);

v_sw(end)];
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Listing B.7: Optimal Control Velocity Profile

function [x,y,V_prof ]= sailboat_velocity_prof_gauss(sbar ,U_max ,h)

% Used for plotting the velocity profile and contour map

% Models elliptic sandbar

5 [x,y]= meshgrid (0:2:h,0:1:h);

% Stream velocity

U = 4*U_max*y.*(h-y)./(h^2);

% Set up sandbar (see "sailboat_con_gauss.m" for detailed ...

description)

10 xc =sbar.xc;

yc =sbar.yc;

sig_x = sbar.a;

sig_y = sbar.b;

Vsmax = sbar.Vsmax;

15 Vs = zeros(size(U));

for k = 1: length(xc)

temp = Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -...

20 ((y-yc(k)).^2) /(2* sig_y(k)^2));

Vs = Vs+ temp;

clear Vspmax loc temp

end

V_prof = U+Vs;
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Listing B.8: Receding Horizon Main Run for Motorboat

function [r_out ,v_out ,dv_out ,elapsed_time ]= receding_horizon_thrust

clear;clc;close all

%% Setup

5 h = 200; % Stream width

d = 40; % x-dist to target

U_max = 10;% Max stream velocity (center)

Beta = 130;% Wind direction (pos. CCW from x-axis)

W_max = 10;% Wind speed

10 x1 = h/2 - d/2;

x2 = h/2 + d/2;

A = [x1; 0];% Starting point , A

B = [x2; h];% Ending point , B

15 dt = 0.1; % time step (APF)

H = 15; % horizon

D = 5; % step (RH)

time = 0;

% Sandbar (Gaussian velocity distribution over ellipse)

20 sbar.xc = [80 100 100]; % X-position of ellipse center(s)

sbar.yc = [40 90 140]; % Y-position of ellipse center(s)

sbar.a = [20 30 30]; % Ellipse semi -major axes

sbar.b = [10 15 10]; % Ellipse semi -minor axes

sbar.Vsmax = [0* U_max 0* U_max 0* U_max];

25 % Note that this velocity adds to U_max.

% If a total velocity is specified be sure to subtract U_max

% Obstacles

obst.xc = [ 85 60 120 100];

obst.yc = [50 70 120 150];

30 obst.rad= 0*[10 20 15 10];

mu = [1/5 1/5 1/5 1/5]; % repulsive potential

jj=1;

R = A;

92



35 v0 = [0;0];

dx_used = 0;

dy_used = 0;

dv_used = [];

x_used = A(1);

40 y_used = A(2);

u_used = 0;

v_used = 0;

%% APF parameters

Q = 1/500* eye(2); % attractive potential weighting matrix

45

v0(:,1) = v0;

start = tic;

while abs(R(2,jj)-h)/h ≥ 0.0001 && R(2,jj)<h

50 %% Compute APF

inner = tic;

[r,v,dv_apf] = APF(v0,A,B,H,U_max ,Beta ,W_max ,sbar ,Q,mu,obst ,h,dt);

% Get desired position & velocity based on horizon

55 if length(r)>H

B_rh = r(:,H);

uB = v(:,H);

else

B_rh = r(:,end);

60 uB = v(:,end);

end

uA = v(:,1);

%% Compute RH

65 N = H;

dx_guess = dx_used(end)*ones(1,N);

dy_guess = dy_used(end)*ones(1,N);

tf_guess = sum((B_rh -A).^2) ^0.5/ norm(uB-uA);

93



70

z0 = [dx_guess dy_guess tf_guess ];

max_sat = 0.5;

lb=[-max_sat*ones(1,size(dx_guess ,2)) ...

-max_sat*ones(1,size(dy_guess ,2)) 0];

ub=[ max_sat*ones(1,size(dx_guess ,2)) ...

max_sat*ones(1,size(dy_guess ,2)) 30];

75 options = ...

optimset('algorithm ','sqp','display ','iter','tolcon ',1e-6,...

'MaxFunEvals ' ,100000,'MaxIter ' ,10000);

[z_star ,J_star ,flag]= fmincon(@(z)rh_thrust_obj(z,uA,N,A,B,H,D,Q,mu,obst ,...

U_max ,W_max ,Beta ,sbar ,h),z0 ,[],[],[],[],lb ,ub ,...

@(z)rh_thrust_con(z,N,A,B_rh ,uA,uB,U_max ,...

80 W_max ,Beta ,sbar ,obst ,h,D),options);

%% Implement RHC (Propagate EOMs)

if flag 6=1

if length(r)≥D

k = D;

85 else

k = length(r);

end

dv = dv_apf; clear dv_apf

u_sw (1) = uA(1);

90 v_sw (1) = uA(2);

x(1) = A(1);

y(1) = A(2);

Dy=0;

for i=1:k

95

u_sw(i+1) = u_sw(i)+dv(1,i);

v_sw(i+1) = v_sw(i)+dv(2,i);

x(i+1) = x(i)+dt*(u_sw(i)+(dt/2)*dv(1,i)/dt)+...

100 (4* U_max/(h^2))*(dt ^4*((Dy*v_sw(i))/4-(dv(2,i)/dt*v_sw(i))/4) +...

h*(((dv(2,i)/dt)/6-Dy/6)*dt^3+( v_sw(i)*dt^2)/2+y(i)*dt)...
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-dt^3*( v_sw(i)^2/3 -(Dy*y(i))/3+(dv(2,i)/dt*y(i))/3)-dt*y(i)^2-...

dt^5*(( dv(2,i)^2/dt^2)/20-(Dy*dv(2,i)/dt)/10+Dy ^2/20) -...

dt^2* v_sw(i)*y(i));

105 y(i+1) = y(i) + dt*(v_sw(i)+(dt/2)*(dv(2,i)/dt-Dy));

dv_used = [dv_used dv(:,i)];

x_used = [x_used x(i)];

y_used = [y_used y(i)];

110 u_used = [u_used u_sw(i)];

v_used = [v_used v_sw(i)];

end

time = [time linspace(time(end)+dt,time(end)+dt*D,D)];

115 else

dx = z_star (1:N);

dy = z_star(N+1:2*N);

tf = z_star(end);

120 x(1) = A(1);

y(1) = A(2);

u_sw (1) = uA(1);

v_sw (1) = uA(2);

dv = [dx;dy];

125 dT = tf/N;

for i=1:D

Dy = 0; % for now

130

u_sw(i+1) = u_sw(i)+dv(1,i);

v_sw(i+1) = v_sw(i)+dv(2,i);

x(i+1) = x(i)+dT*(u_sw(i)+(dT/2)*dv(1,i)/dT)+...

135 (4* U_max/(h^2))*(dT ^4*((Dy*v_sw(i))/4-(dv(2,i)/dT*v_sw(i))/4) +...

h*(((dv(2,i)/dT)/6-Dy/6)*dT^3+( v_sw(i)*dT^2)/2+y(i)*dT)...
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-dT^3*( v_sw(i)^2/3 -(Dy*y(i))/3+(dv(2,i)/dT*y(i))/3)-dT*y(i)^2-...

dT^5*(( dv(2,i)^2/dT^2)/20-(Dy*dv(2,i)/dT)/10+Dy ^2/20) -...

dT^2* v_sw(i)*y(i));

140 y(i+1) = y(i) + dT*(v_sw(i)+(dT/2)*(dv(2,i)/dT-Dy));

dv_used = [dv_used dv(:,i)];

x_used = [x_used x(i)];

y_used = [y_used y(i)];

145 u_used = [u_used u_sw(i)];

v_used = [v_used v_sw(i)];

end

time = [time linspace(time(end)+dT,time(end)+dT*D,D)];

end

150

clear x y u_sw v_sw

%% Update APF , Repeat

A = [x_used(end);y_used(end)];

v0 = [u_used(end);v_used(end)];

155 elapsed_time(jj) = toc(inner);

jj = jj+1;

R(:,jj) = A;

end

160 total_time = toc(start)

time_per_step = mean(elapsed_time)

t_final = time(end)

r_out = [x_used;y_used ];

v_out = [u_used;v_used ];

165 dv_out = dv_used;

V = sqrt(v_out (1,:) .^2+ v_out (2,:) .^2);

plot(x_used ,y_used);

axis ([0 200 0 200])

170 figure

plot(V)
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axis square

end

function [r,v,dv] = ...

APF(v,A,B,H,U_max ,Beta ,W_max ,sbar ,Q,mu ,obst ,h,dt)

175

%% Simulation

pot_ang = .00001;

K =100*[1 0;0 1]; % gain matrix

dv_max = 0.5;

180 r(:,1) = A;

i = 2;

U_max =0;

while abs(r(2,i-1)-h) >0.01 && r(2,i-1)<h && i ≤ H

grad_pot(:,i-1) = att_grad_pot(r(:,i-1)-B,Q)+...

185 rep_grad_pot(r(:,i-1),Q,mu ,obst);

if norm(v(:,i-1)) 6=0

ang(i) = ...

acosd(dot(v(:,i-1)/norm(v(:,i-1)) ,(-grad_pot(:,i-1))/...

norm(grad_pot(:,i-1))));

else

190 ang(i) = acosd(dot(v(:,i-1) ,(-grad_pot(:,i-1))));

end

if ang(i) > pot_ang

dv(:,i) = -K*grad_pot(:,i-1)-v(:,i-1);

if abs(norm(dv(:,i)))>dv_max % saturation alg.

195 dv(:,i) = dv_max*dv(:,i)/norm(dv(:,i));

end

else

dv(:,i) = [0;0];

end

200 [r(:,i),v(:,i),r_apf(:,i)] = ...

EOM(r(:,i-1),v(:,i-1),dv(:,i),Beta ,W_max ,...

U_max ,h,sbar ,dt);

i = i+1;

end
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end

205 %% Attractive potential

function grad = att_grad_pot(r,Q) %grad of attractive potential

% Quadratic potential function

grad = Q*r; % position and velocity goal state

210

end

%% Repulsive potential

function grad = rep_grad_pot(r,Q,mu,obst)

215 for i = 1: length(obst.xc)

r_obs = [obst.xc(i);obst.yc(i)];

P_inv = 1/obst.rad(i)^2*eye(2);

if obst.rad(i)==0

grad(:,i)=[0;0];

220 else

grad(:,i) = ...

mu(i)/((r-r_obs) '*P_inv*(r-r_obs) -1)*(eye(2) - ...

P_inv *(r-r_obs)*r'/((r-r_obs)'*P_inv *(r-r_obs) -1))*Q*r;

end

end

225 grad = sum(grad ,2);

end

%% Velocity profile

function U = vel_prof(r,U_max ,h,sbar)

230 x = r(1);

y = r(2);

U = 4*U_max*y.*(h-y)./(h^2);

xc = sbar.xc;

235 yc = sbar.yc;

sig_x = sbar.a;

sig_y = sbar.b;
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Vsmax = sbar.Vsmax;

Vs = 0;

240 for k = 1: length(xc)

temp = ...

Vsmax(k).*exp(-((x-xc(k)).^2) /(2* sig_x(k)^2) -((y-yc(k)).^2) /...

(2* sig_y(k)^2));

Vs = Vs+ temp;

clear temp

245 end

U = [U+Vs;0];

end

%% Equations of motion

% function V = EOM(r,theta ,Beta ,W_max ,U_max ,h,sbar)

250

function [R,V,R_apf] = EOM(r,vel ,dv,Beta ,W_max ,Umax ,h,sbar ,dT)

x0 = r(1);

y0 = r(2);

255 u0 = vel (1);

v0 = vel (2);

Dy = 0; % for now

u = u0+dv(1);

260 v = v0+dv(2);

x = x0+dT*(u0+(dT/2)*dv(1)/dT)+(4* Umax/(h^2))*(dT^4*(( Dy*v0)/4 ...

-(dv(2)/dT*v0)/4)+h*(((dv(2)/dT)/6-Dy/6)*dT^3+(v0*dT^2) /2+y0*dT)...

-dT^3*(v0^2/3 -(Dy*y0)/3+(dv(2)/dT*y0)/3)-dT*y0^2-dT ^5*((dv(2) ^2/dT^2) ...

265 /20 -(Dy*dv(2)/dT)/10+Dy ^2/20) -dT^2*v0*y0);

y = y0 + dT*(v0+(dT/2)*(dv(2)/dT-Dy));

R = [x;y];

R_apf = [x0+u*dT;y0+v*dT];

270 V = [u;v];

end
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Listing B.9: Receding Horizon Objective File for Motorboat

function J = ...

rh_thrust_obj(z,uA,N,A,B,H,D,Q,mu,obst ,Umax ,W_max ,Beta ,sbar ,h)

dx = z(1:N);

4 dy = z(N+1:2*N);

tf = z(end);

Umax =0;

x(1) = A(1);

y(1) = A(2);

9 u_sw (1) = uA(1);

v_sw (1) = uA(2);

dv = [dx;dy];

dT = tf/N;

14 for i=1:H

Dy = 0; % for now

u_sw(i+1) = u_sw(i)+dv(1,i);

19 v_sw(i+1) = v_sw(i)+dv(2,i);

x(i+1) = ...

x(i)+dT*(u_sw(i)+(dT/2)*dv(1,i)/dT)+(4* Umax/(h^2))*(dT ^4*...

((Dy*v_sw(i))/4-(dv(2,i)/dT*v_sw(i))/4) +...

h*(((dv(2,i)/dT)/6-Dy/6)*dT^3+( v_sw(i)*dT^2)/2+y(i)*dT)...

24 -dT^3*( v_sw(i)^2/3 -(Dy*y(i))/3+(dv(2,i)/dT*y(i))/3) -...

dT*y(i)^2-dT^5*((dv(2,i)^2/dT^2) /20 ...

-(Dy*dv(2,i)/dT)/10+Dy ^2/20) -dT^2* v_sw(i)*y(i));

y(i+1) = y(i) + dT*(v_sw(i)+(dT/2)*(dv(2,i)/dT-Dy));

end

29

r = [x(D);y(D)]-B;

J = z(end) + att_pot(r,Q);
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end

34

%% Attractive potential

function ap = att_pot(r,Q) %grad of attractive potential

% Quadratic potential function

39 ap = 0.5*r'*Q*r; % position and velocity goal state

end

%% Repulsive potential

function grad = rep_grad_pot(r,Q,mu,obst)

44

for i = 1: length(obst.xc)

r_obs = [obst.xc(i);obst.yc(i)];

P_inv = 1/obst.rad(i)^2*eye(2);

if obst.rad(i)==0

49 grad(:,i)=[0;0];

else

grad(:,i) = mu/((r-r_obs)'*P_inv *(r-r_obs) -1)*(eye(2) -...

P_inv *(r-r_obs)*r'/((r-r_obs)'*P_inv *(r-r_obs) -1))*Q*r;

end

54 end

grad = sum(grad ,2);

end
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Listing B.10: Receding Horizon Constraint File for Motorboat

function [g,h] = ...

rh_thrust_con(z,N,A,B,uA,uB,Umax ,W_max ,Beta ,sbar ,obst ,h,D)

Umax = 0;

4 dx = z(1:N);

dy = z(N+1:2*N);

tf = z(end);

x(1) = A(1);

9 y(1) = A(2);

u_sw (1) = uA(1);

v_sw (1) = uA(2);

dv = [dx;dy];

dT = tf/N;

14

for i=1:D

Dy = 0; % for now

19 u_sw(i+1) = u_sw(i)+dv(1,i);

v_sw(i+1) = v_sw(i)+dv(2,i);

x(i+1) = ...

x(i)+dT*(u_sw(i)+(dT/2)*dv(1,i)/dT)+(4* Umax/(h^2))*(dT ^4*...

((Dy*v_sw(i))/4 -(dv(2,i)/dT*v_sw(i))/4) +...

24 h*(((dv(2,i)/dT)/6-Dy/6)*dT^3+( v_sw(i)*dT^2)/2+y(i)*dT)...

-dT^3*( v_sw(i)^2/3 -(Dy*y(i))/3+(dv(2,i)/dT*y(i))/3) -...

dT*y(i)^2-dT^5*((dv(2,i)^2/dT^2) /20 ...

-(Dy*dv(2,i)/dT)/10+Dy ^2/20) -dT^2* v_sw(i)*y(i));

y(i+1) = y(i) + dT*(v_sw(i)+(dT/2)*(dv(2,i)/dT-Dy));

29 end

% Inequality constraints

g = [];
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34 % Equality constraints

h=[ y(end)-B(2);% Must finish at point B

x(end)-B(1);

u_sw(end)-uB(1);

v_sw(end)-uB(2)];
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